

R Programming

i

About the Tutorial

R is a programming language and software environment for statistical analysis, graphics

representation and reporting. R was created by Ross Ihaka and Robert Gentleman at the

University of Auckland, New Zealand, and is currently developed by the R Development

Core Team.

R is freely available under the GNU General Public License, and pre-compiled binary

versions are provided for various operating systems like Linux, Windows and Mac.

This programming language was named R, based on the first letter of first name of the

two R authors (Robert Gentleman and Ross Ihaka), and partly a play on the name of the

Bell Labs Language S.

Audience

This tutorial is designed for software programmers, statisticians and data miners who are

looking forward for developing statistical software using R programming. If you are trying

to understand the R programming language as a beginner, this tutorial will give you

enough understanding on almost all the concepts of the language from where you can take

yourself to higher levels of expertise.

Prerequisites

Before proceeding with this tutorial, you should have a basic understanding of Computer

Programming terminologies. A basic understanding of any of the programming languages

will help you in understanding the R programming concepts and move fast on the learning

track.

Copyright & Disclaimer

 Copyright 2016 by Tutorials Point (I) Pvt. Ltd.

All the content and graphics published in this e-book are the property of Tutorials Point (I)

Pvt. Ltd. The user of this e-book is prohibited to reuse, retain, copy, distribute or republish

any contents or a part of contents of this e-book in any manner without written consent

of the publisher.

We strive to update the contents of our website and tutorials as timely and as precisely as

possible, however, the contents may contain inaccuracies or errors. Tutorials Point (I) Pvt.

Ltd. provides no guarantee regarding the accuracy, timeliness or completeness of our

website or its contents including this tutorial. If you discover any errors on our website or

in this tutorial, please notify us at contact@tutorialspoint.com

mailto:contact@tutorialspoint.com

R Programming

ii

Table of Contents

About the Tutorial .. i

Audience .. i

Prerequisites .. i

Copyright & Disclaimer ... i

Table of Contents .. ii

1. R – OVERVIEW ... 1

Evolution of R .. 1

Features of R ... 1

2. R – ENVIRONMENT SETUP ... 3

Try it Option Online ... 3

Local Environment Setup... 3

3. R – BASIC SYNTAX .. 5

R Command Prompt .. 5

R Script File ... 5

Comments ... 6

4. R – DATA TYPES ... 7

Vectors .. 8

Lists ... 9

Matrices .. 9

Arrays.. 10

Factors .. 10

Data Frames .. 11

5. R – VARIABLES ... 12

Variable Assignment ... 12

R Programming

iii

Data Type of a Variable ... 13

Finding Variables ... 13

Deleting Variables ... 14

6. R – OPERATORS ... 16

Types of Operators .. 16

Arithmetic Operators .. 16

Relational Operators ... 18

Logical Operators .. 19

Assignment Operators... 21

Miscellaneous Operators .. 22

7. R – DECISION MAKING ... 24

R - If Statement ... 25

R – If...Else Statement ... 26

The if...else if...else Statement .. 27

R – Switch Statement .. 28

8. R – LOOPS .. 30

R - Repeat Loop ... 31

R - While Loop ... 32

R – For Loop .. 33

Loop Control Statements... 34

R – Break Statement.. 35

R – Next Statement ... 36

9. R – FUNCTION ... 38

Function Definition ... 38

Function Components ... 38

Built-in Function .. 38

R Programming

iv

User-defined Function ... 39

Calling a Function .. 39

Lazy Evaluation of Function ... 41

10. R – STRINGS ... 43

Rules Applied in String Construction ... 43

String Manipulation .. 44

11. R – VECTORS .. 49

Vector Creation ... 49

Accessing Vector Elements .. 51

Vector Manipulation ... 51

12. R – LISTS .. 54

Creating a List .. 54

Naming List Elements .. 55

Accessing List Elements ... 55

Manipulating List Elements ... 56

Merging Lists ... 57

Converting List to Vector ... 58

13. R – MATRICES .. 60

Accessing Elements of a Matrix ... 61

Matrix Computations .. 62

14. R – ARRAYS .. 65

Naming Columns and Rows ... 66

Accessing Array Elements .. 66

Manipulating Array Elements .. 67

Calculations Across Array Elements ... 68

R Programming

v

15. R – FACTORS .. 70

Factors in Data Frame ... 70

Changing the Order of Levels .. 71

Generating Factor Levels ... 72

16. R – DATA FRAMES ... 73

Extract Data from Data Frame ... 75

Expand Data Frame ... 76

17. R – PACKAGES.. 79

18. R – DATA RESHAPING .. 82

Joining Columns and Rows in a Data Frame .. 82

Merging Data Frames .. 83

Melting and Casting .. 85

Melt the Data .. 86

Cast the Molten Data .. 87

19. R – CSV FILES ... 89

Getting and Setting the Working Directory ... 89

Input as CSV File .. 89

Reading a CSV File ... 90

Analyzing the CSV File ... 90

Writing into a CSV File ... 93

20. R – EXCEL FILE ... 94

Install xlsx Package .. 94

Verify and Load the "xlsx" Package ... 94

Input as xlsx File .. 94

Reading the Excel File .. 95

R Programming

vi

21. R – BINARY FILES ... 96

Writing the Binary File .. 96

Reading the Binary File .. 97

22. R – XML FILES .. 99

Input Data ... 99

Reading XML File ... 101

Details of the First Node .. 103

XML to Data Frame ... 105

23. R – JSON FILE ... 106

Install rjson Package .. 106

Input Data ... 106

Read the JSON File .. 106

Convert JSON to a Data Frame .. 107

24. R – WEB DATA ... 109

25. R – DATABASES .. 111

RMySQL Package ... 111

Connecting R to MySql .. 111

Querying the Tables .. 112

Query with Filter Clause .. 112

Updating Rows in the Tables ... 113

Inserting Data into the Tables ... 113

Creating Tables in MySql ... 113

Dropping Tables in MySql .. 113

26. R – PIE CHARTS .. 115

Pie Chart Title and Colors .. 116

R Programming

vii

Slice Percentages and Chart Legend .. 117

3D Pie Chart .. 118

27. R – BAR CHARTS .. 120

Bar Chart Labels, Title and Colors .. 121

Group Bar Chart and Stacked Bar Chart ... 122

28. R – BOXPLOTS .. 124

Creating the Boxplot ... 125

Boxplot with Notch ... 126

29. R – HISTOGRAMS ... 127

Range of X and Y values .. 128

30. R – LINE GRAPHS ... 130

Line Chart Title, Color and Labels .. 131

Multiple Lines in a Line Chart .. 132

31. R – SCATTERPLOTS .. 134

Creating the Scatterplot .. 135

Scatterplot Matrices .. 136

32. R – MEAN, MEDIAN & MODE .. 138

Mean ... 138

Applying Trim Option .. 139

Applying NA Option .. 139

Median .. 140

Mode .. 140

33. R – LINEAR REGRESSION .. 142

Steps to Establish a Regression ... 142

lm() Function ... 143

R Programming

viii

predict() Function .. 144

34. R – MULTIPLE REGRESSION ... 147

lm() Function ... 147

Example .. 147

35. R – LOGISTIC REGRESSION ... 150

Create Regression Model .. 151

36. R – NORMAL DISTRIBUTION .. 153

dnorm() ... 153

pnorm() ... 154

qnorm() ... 155

rnorm().. 156

37. R – BINOMIAL DISTRIBUTION .. 158

dbinom() ... 158

pbinom() ... 159

qbinom() ... 159

rbinom() .. 160

38. R – POISSON REGRESSION ... 161

39. R – ANALYSIS OF COVARIANCE .. 164

40. R – TIME SERIES ANALYSIS ... 167

Different Time Intervals .. 168

Multiple Time Series ... 169

41. R – NONLINEAR LEAST SQUARE ... 171

42. R – DECISION TREE .. 174

Install R Package ... 174

R Programming

ix

43. R – RANDOM FOREST .. 178

Install R Package ... 178

44. R – SURVIVAL ANALYSIS ... 181

45. R – CHI SQUARE TEST .. 184

R Programming

1

R is a programming language and software environment for statistical analysis, graphics

representation and reporting. R was created by Ross Ihaka and Robert Gentleman at the

University of Auckland, New Zealand, and is currently developed by the R Development

Core Team.

The core of R is an interpreted computer language which allows branching and looping as

well as modular programming using functions. R allows integration with the procedures

written in the C, C++, .Net, Python or FORTRAN languages for efficiency.

R is freely available under the GNU General Public License, and pre-compiled binary

versions are provided for various operating systems like Linux, Windows and Mac.

R is free software distributed under a GNU-style copy left, and an official part of the GNU

project called GNU S.

Evolution of R

R was initially written by Ross Ihaka and Robert Gentleman at the Department of

Statistics of the University of Auckland in Auckland, New Zealand. R made its first

appearance in 1993.

 A large group of individuals has contributed to R by sending code and bug reports.

 Since mid-1997 there has been a core group (the "R Core Team") who can modify

the R source code archive.

Features of R

As stated earlier, R is a programming language and software environment for statistical

analysis, graphics representation and reporting. The following are the important features

of R:

 R is a well-developed, simple and effective programming language which includes

conditionals, loops, user defined recursive functions and input and output facilities.

 R has an effective data handling and storage facility,

 R provides a suite of operators for calculations on arrays, lists, vectors and

matrices.

 R provides a large, coherent and integrated collection of tools for data analysis.

 R provides graphical facilities for data analysis and display either directly at the

computer or printing at the papers.

As a conclusion, R is world’s most widely used statistics programming language. It's the

1 choice of data scientists and supported by a vibrant and talented community of

contributors. R is taught in universities and deployed in mission critical business

1. R – Overview

R Programming

2

applications. This tutorial will teach you R programming along with suitable examples in

simple and easy steps.

R Programming

3

Try it Option Online

You really do not need to set up your own environment to start learning R programming

language. Reason is very simple, we already have set up R Programming environment

online, so that you can compile and execute all the available examples online at the same

time when you are doing your theory work. This gives you confidence in what you are

reading and to check the result with different options. Feel free to modify any example

and execute it online.

Try the following example using Try it option at the website available at the top right

corner of the below sample code box:

Print Hello World.

print("Hello World")

Add two numbers.

print(23.9 + 11.6)

For most of the examples given in this tutorial, you will find Try it option at the website,

so just make use of it and enjoy your learning.

Local Environment Setup

If you are still willing to set up your environment for R, you can follow the steps given

below.

Windows Installation

You can download the Windows installer version of R from R-3.2.2 for Windows (32/64

bit) and save it in a local directory.

As it is a Windows installer (.exe) with a name "R-version-win.exe". You can just double

click and run the installer accepting the default settings. If your Windows is 32-bit version,

it installs the 32-bit version. But if your windows is 64-bit, then it installs both the 32-bit

and 64-bit versions.

After installation you can locate the icon to run the Program in a directory structure "R\R-

3.2.2\bin\i386\Rgui.exe" under the Windows Program Files. Clicking this icon brings up

the R-GUI which is the R console to do R Programming.

2. R – Environment Setup

https://cran.r-project.org/bin/windows/base/
https://cran.r-project.org/bin/windows/base/

R Programming

4

Linux Installation

R is available as a binary for many versions of Linux at the location R Binaries.

The instruction to install Linux varies from flavor to flavor. These steps are mentioned

under each type of Linux version in the mentioned link. However, if you are in a hurry,

then you can use yum command to install R as follows:

$ yum install R

Above command will install core functionality of R programming along with standard

packages, still you need additional package, then you can launch R prompt as follows:

$ R

R version 3.2.0 (2015-04-16) -- "Full of Ingredients"

Copyright (C) 2015 The R Foundation for Statistical Computing

Platform: x86_64-redhat-linux-gnu (64-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY.

You are welcome to redistribute it under certain conditions.

Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.

Type 'contributors()' for more information and

'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or

'help.start()' for an HTML browser interface to help.

Type 'q()' to quit R.

>

Now you can use install command at R prompt to install the required package. For

example, the following command will install plotrix package which is required for 3D

charts.

> install("plotrix")

https://cran.r-project.org/bin/linux/

R Programming

5

As a convention, we will start learning R programming by writing a "Hello, World!"

program. Depending on the needs, you can program either at R command prompt or you

can use an R script file to write your program. Let's check both one by one.

R Command Prompt

Once you have R environment setup, then it’s easy to start your R command prompt by

just typing the following command at your command prompt:

$ R

This will launch R interpreter and you will get a prompt > where you can start typing your

program as follows:

> myString <- "Hello, World!"

> print (myString)

[1] "Hello, World!"

Here first statement defines a string variable myString, where we assign a string "Hello,

World!" and then next statement print() is being used to print the value stored in variable

myString.

R Script File

Usually, you will do your programming by writing your programs in script files and then

you execute those scripts at your command prompt with the help of R interpreter

called Rscript. So let's start with writing following code in a text file called test.R as under:

My first program in R Programming

myString <- "Hello, World!"

print (myString)

Save the above code in a file test.R and execute it at Linux command prompt as given

below. Even if you are using Windows or other system, syntax will remain same.

$ Rscript test.R

When we run the above program, it produces the following result.

[1] "Hello, World!"

3. R – Basic Syntax

R Programming

6

Comments

Comments are like helping text in your R program and they are ignored by the interpreter

while executing your actual program. Single comment is written using # in the beginning

of the statement as follows:

My first program in R Programming

R does not support multi-line comments but you can perform a trick which is something

as follows:

if(FALSE){

 "This is a demo for multi-line comments and it should be put

 inside either a single of double quote"

}

myString <- "Hello, World!"

print (myString)

Though above comments will be executed by R interpreter, they will not interfere with

your actual program. You should put such comments inside, either single or double quote.

R Programming

7

Generally, while doing programming in any programming language, you need to use

various variables to store various information. Variables are nothing but reserved memory

locations to store values. This means that, when you create a variable you reserve some

space in memory.

You may like to store information of various data types like character, wide character,

integer, floating point, double floating point, Boolean etc. Based on the data type of a

variable, the operating system allocates memory and decides what can be stored in the

reserved memory.

In contrast to other programming languages like C and java in R, the variables are not

declared as some data type. The variables are assigned with R-Objects and the data type

of the R-object becomes the data type of the variable. There are many types of R-objects.

The frequently used ones are:

 Vectors

 Lists

 Matrices

 Arrays

 Factors

 Data Frames

The simplest of these objects is the vector object and there are six data types of these

atomic vectors, also termed as six classes of vectors. The other R-Objects are built upon

the atomic vectors.

Data

Type
Example Verify

Logical TRUE , FALSE

v <- TRUE

print(class(v))

it produces the following result:

[1] "logical"

Numeric 12.3, 5, 999

v <- 23.5

print(class(v))

it produces the following result:

[1] "numeric"

4. R – Data Types

R Programming

8

Integer 2L, 34L, 0L

v <- 2L

print(class(v))

it produces the following result:

[1] "integer"

Complex 3 + 2i

v <- 2+5i

print(class(v))

it produces the following result:

[1] "complex"

Character
'a' , '"good", "TRUE",

'23.4'

v <- "TRUE"

print(class(v))

it produces the following result:

[1] "character"

Raw
"Hello" is stored as 48 65

6c 6c 6f

v <- charToRaw("Hello")

print(class(v))

it produces the following result:

[1] "raw"

In R programming, the very basic data types are the R-objects called vectors which hold

elements of different classes as shown above. Please note in R the number of classes is

not confined to only the above six types. For example, we can use many atomic vectors

and create an array whose class will become array.

Vectors

When you want to create vector with more than one element, you should use c() function

which means to combine the elements into a vector.

Create a vector.

apple <- c('red','green',"yellow")

print(apple)

R Programming

9

Get the class of the vector.

print(class(apple))

When we execute the above code, it produces the following result:

[1] "red" "green" "yellow"

[1] "character"

Lists

A list is an R-object which can contain many different types of elements inside it like

vectors, functions and even another list inside it.

Create a list.

list1 <- list(c(2,5,3),21.3,sin)

Print the list.

print(list1)

When we execute the above code, it produces the following result:

[[1]]

[1] 2 5 3

[[2]]

[1] 21.3

[[3]]

function (x) .Primitive("sin")

Matrices

A matrix is a two-dimensional rectangular data set. It can be created using a vector input

to the matrix function.

Create a matrix.

M = matrix(c('a','a','b','c','b','a'), nrow=2,ncol=3,byrow = TRUE)

print(M)

When we execute the above code, it produces the following result:

 [,1] [,2] [,3]

R Programming

10

[1,] "a" "a" "b"

[2,] "c" "b" "a"

Arrays

While matrices are confined to two dimensions, arrays can be of any number of

dimensions. The array function takes a dim attribute which creates the required number

of dimension. In the below example we create an array with two elements which are 3x3

matrices each.

Create an array.

a <- array(c('green','yellow'),dim=c(3,3,2))

print(a)

When we execute the above code, it produces the following result:

, , 1

 [,1] [,2] [,3]

[1,] "green" "yellow" "green"

[2,] "yellow" "green" "yellow"

[3,] "green" "yellow" "green"

, , 2

 [,1] [,2] [,3]

[1,] "yellow" "green" "yellow"

[2,] "green" "yellow" "green"

[3,] "yellow" "green" "yellow"

Factors

Factors are the r-objects which are created using a vector. It stores the vector along with

the distinct values of the elements in the vector as labels. The labels are always character

irrespective of whether it is numeric or character or Boolean etc. in the input vector. They

are useful in statistical modeling.

Factors are created using the factor() function.The nlevels functions gives the count of

levels.

Create a vector.

apple_colors <- c('green','green','yellow','red','red','red','green')

R Programming

11

Create a factor object.

factor_apple <- factor(apple_colors)

Print the factor.

print(factor_apple)

print(nlevels(factor_apple))

When we execute the above code, it produces the following result:

[1] green green yellow red red red yellow green

Levels: green red yellow

applying the nlevels function we can know the number of distinct values

[1] 3

Data Frames

Data frames are tabular data objects. Unlike a matrix in data frame each column can

contain different modes of data. The first column can be numeric while the second column

can be character and third column can be logical. It is a list of vectors of equal length.

Data Frames are created using the data.frame() function.

Create the data frame.

BMI <- data.frame(

 gender = c("Male", "Male","Female"),

 height = c(152, 171.5, 165),

 weight = c(81,93, 78),

 Age =c(42,38,26)

)

print(BMI)

When we execute the above code, it produces the following result:

 gender height weight Age

1 Male 152.0 81 42

2 Male 171.5 93 38

3 Female 165.0 78 26

R Programming

12

A variable provides us with named storage that our programs can manipulate. A variable

in R can store an atomic vector, group of atomic vectors or a combination of many R-

objects. A valid variable name consists of letters, numbers and the dot or underline

characters. The variable name starts with a letter or the dot not followed by a number.

Variable Name Validity Reason

var_name2. valid Has letters, numbers, dot and underscore

var_name% Invalid
Has the character '%'. Only dot(.) and underscore

allowed.

2var_name invalid Starts with a number

.var_name ,

var.name
valid

Can start with a dot(.) but the dot(.)should not be

followed by a number.

.2var_name invalid
The starting dot is followed by a number making it

invalid

_var_name invalid Starts with _ which is not valid

Variable Assignment

The variables can be assigned values using leftward, rightward and equal to operator. The

values of the variables can be printed using print() or cat()function. The cat() function

combines multiple items into a continuous print output.

Assignment using equal operator.

var.1 = c(0,1,2,3)

Assignment using leftward operator.

var.2 <- c("learn","R")

Assignment using rightward operator.

c(TRUE,1) -> var.3

print(var.1)

5. R – Variables

R Programming

13

cat ("var.1 is ", var.1 ,"\n")

cat ("var.2 is ", var.2 ,"\n")

cat ("var.3 is ", var.3 ,"\n")

When we execute the above code, it produces the following result:

[1] 0 1 2 3

var.1 is 0 1 2 3

var.2 is learn R

var.3 is 1 1

Note: The vector c(TRUE,1) has a mix of logical and numeric class. So logical class is

coerced to numeric class making TRUE as 1.

Data Type of a Variable

In R, a variable itself is not declared of any data type, rather it gets the data type of the

R -object assigned to it. So R is called a dynamically typed language, which means that

we can change a variable’s data type of the same variable again and again when using it

in a program.

var_x <- "Hello"

cat("The class of var_x is ",class(var_x),"\n")

var_x <- 34.5

cat(" Now the class of var_x is ",class(var_x),"\n")

var_x <- 27L

cat(" Next the class of var_x becomes ",class(var_x),"\n")

When we execute the above code, it produces the following result:

The class of var_x is character

 Now the class of var_x is numeric

 Next the class of var_x becomes integer

Finding Variables

To know all the variables currently available in the workspace we use the ls() function.

Also the ls() function can use patterns to match the variable names.

print(ls())

R Programming

14

When we execute the above code, it produces the following result:

[1] "my var" "my_new_var" "my_var" "var.1"

[5] "var.2" "var.3" "var.name" "var_name2."

[9] "var_x" "varname"

Note: It is a sample output depending on what variables are declared in your environment.

The ls() function can use patterns to match the variable names.

List the variables starting with the pattern "var".

print(ls(pattern="var"))

When we execute the above code, it produces the following result:

[1] "my var" "my_new_var" "my_var" "var.1"

[5] "var.2" "var.3" "var.name" "var_name2."

[9] "var_x" "varname"

The variables starting with dot(.) are hidden, they can be listed using "all.names=TRUE"

argument to ls() function.

print(ls(all.name=TRUE))

When we execute the above code, it produces the following result:

[1] ".cars" ".Random.seed" ".var_name" ".varname" ".varname2"

[6] "my var" "my_new_var" "my_var" "var.1" "var.2"

[11]"var.3" "var.name" "var_name2." "var_x"

Deleting Variables

Variables can be deleted by using the rm() function. Below we delete the variable var.3.

On printing the value of the variable error is thrown.

rm(var.3)

print(var.3)

When we execute the above code, it produces the following result:

[1] "var.3"

Error in print(var.3) : object 'var.3' not found

R Programming

15

All the variables can be deleted by using the rm() and ls() function together.

rm(list=ls())

print(ls())

When we execute the above code, it produces the following result:

character(0)

R Programming

16

An operator is a symbol that tells the compiler to perform specific mathematical or logical

manipulations. R language is rich in built-in operators and provides following types of

operators.

Types of Operators

We have the following types of operators in R programming:

 Arithmetic Operators

 Relational Operators

 Logical Operators

 Assignment Operators

 Miscellaneous Operators

Arithmetic Operators

Following table shows the arithmetic operators supported by R language. The operators

act on each element of the vector.

Operator Description Example

+
Adds two

vectors

v <- c(2,5.5,6)

t <- c(8, 3, 4)

print(v+t)

it produces the following result:

[1] 10.0 8.5 10.0

−

Subtracts

second vector

from the first

v <- c(2,5.5,6)

t <- c(8, 3, 4)

print(v-t)

it produces the following result:

[1] -6.0 2.5 2.0

6. R – Operators

R Programming

17

*
Multiplies both

vectors

v <- c(2,5.5,6)

t <- c(8, 3, 4)

print(v*t)

it produces the following result:

[1] 16.0 16.5 24.0

/

Divide the first

vector with the

second

v <- c(2,5.5,6)

t <- c(8, 3, 4)

print(v/t)

When we execute the above code, it produces the

following result:

[1] 0.250000 1.833333 1.500000

%%

Give the

remainder of the

first vector with

the second

v <- c(2,5.5,6)

t <- c(8, 3, 4)

print(v%%t)

it produces the following result:

[1] 2.0 2.5 2.0

%/%

The result of

division of first

vector with

second

(quotient)

v <- c(2,5.5,6)

t <- c(8, 3, 4)

print(v%/%t)

it produces the following result:

[1] 0 1 1

^

The first vector

raised to the

exponent of

second vector

v <- c(2,5.5,6)

t <- c(8, 3, 4)

print(v^t)

R Programming

18

it produces the following result:

[1] 256.000 166.375 1296.000

Relational Operators

Following table shows the relational operators supported by R language. Each element of

the first vector is compared with the corresponding element of the second vector. The

result of comparison is a Boolean value.

Operator Description Example

>

Checks if

each element

of the first

vector is

greater than

the

corresponding

element of

the second

vector.

v <- c(2,5.5,6,9)

t <- c(8,2.5,14,9)

print(v>t)

it produces the following result:

[1] FALSE TRUE FALSE FALSE

<

Checks if

each element

of the first

vector is less

than the

corresponding

element of

the second

vector.

v <- c(2,5.5,6,9)

t <- c(8,2.5,14,9)

print(v < t)

it produces the following result:

[1] TRUE FALSE TRUE FALSE

==

Checks if

each element

of the first

vector is

equal to the

corresponding

element of

the second

vector.

v <- c(2,5.5,6,9)

t <- c(8,2.5,14,9)

print(v==t)

it produces the following result:

[1] FALSE FALSE FALSE TRUE

R Programming

19

<=

Checks if

each element

of the first

vector is less

than or equal

to the

corresponding

element of

the second

vector.

v <- c(2,5.5,6,9)

t <- c(8,2.5,14,9)

print(v<=t)

it produces the following result:

[1] TRUE FALSE TRUE TRUE

>=

Checks if

each element

of the first

vector is

greater than

or equal to

the

corresponding

element of

the second

vector.

v <- c(2,5.5,6,9)

t <- c(8,2.5,14,9)

print(v>=t)

it produces the following result:

[1] FALSE TRUE FALSE TRUE

!=

Checks if

each element

of the first

vector is

unequal to

the

corresponding

element of

the second

vector.

v <- c(2,5.5,6,9)

t <- c(8,2.5,14,9)

print(v!=t)

it produces the following result:

[1] TRUE TRUE TRUE FALSE

Logical Operators

Following table shows the logical operators supported by R language. It is applicable only

to vectors of type logical, numeric or complex. All numbers greater than 1 are considered

as logical value TRUE.

Each element of the first vector is compared with the corresponding element of the second

vector. The result of comparison is a Boolean value.

R Programming

20

Operator Description Example

&

It is called

Element-wise

Logical AND

operator. It

combines

each element

of the first

vector with

the

corresponding

element of

the second

vector and

gives a

output TRUE

if both the

elements are

TRUE.

v <- c(3,1,TRUE,2+3i)

t <- c(4,1,FALSE,2+3i)

print(v&t)

it produces the following result:

[1] TRUE TRUE FALSE TRUE

|

It is called

Element-wise

Logical OR

operator. It

combines

each element

of the first

vector with

the

corresponding

element of

the second

vector and

gives a

output TRUE

if one the

elements is

TRUE.

v <- c(3,0,TRUE,2+2i)

t <- c(4,0,FALSE,2+3i)

print(v|t)

it produces the following result:

[1] TRUE FALSE TRUE TRUE

!

It is called

Logical NOT

operator.

Takes each

element of

the vector

and gives the

opposite

logical value.

v <- c(3,0,TRUE,2+2i)

print(!v)

it produces the following result:

[1] FALSE TRUE FALSE FALSE

R Programming

21

The logical operator && and || considers only the first element of the vectors and give a

vector of single element as output.

Operator Description Example

&&

Called Logical

AND

operator.

Takes first

element of

both the

vectors and

gives the

TRUE only if

both are

TRUE.

v <- c(3,0,TRUE,2+2i)

t <- c(1,3,TRUE,2+3i)

print(v&&t)

it produces the following result:

[1] TRUE

||

Called Logical

OR operator.

Takes first

element of

both the

vectors and

gives the

TRUE only if

both are

TRUE.

v <- c(0,0,TRUE,2+2i)

t <- c(0,3,TRUE,2+3i)

print(v||t)

it produces the following result:

[1] FALSE

Assignment Operators

These operators are used to assign values to vectors.

Operator Description Example

<-

or

=

or

<<-

Called Left

Assignment

v1 <- c(3,1,TRUE,2+3i)

v2 <<- c(3,1,TRUE,2+3i)

v3 = c(3,1,TRUE,2+3i)

print(v1)

print(v2)

print(v3)

it produces the following result:

[1] 3+0i 1+0i 1+0i 2+3i

[1] 3+0i 1+0i 1+0i 2+3i

R Programming

22

[1] 3+0i 1+0i 1+0i 2+3i

->

or

->>

Called Right

Assignment

c(3,1,TRUE,2+3i) -> v1

c(3,1,TRUE,2+3i) ->> v2

print(v1)

print(v2)

it produces the following result:

[1] 3+0i 1+0i 1+0i 2+3i

[1] 3+0i 1+0i 1+0i 2+3i

Miscellaneous Operators

These operators are used to for specific purpose and not general mathematical or logical

computation.

Operator Description Example

:

Colon

operator. It

creates the

series of

numbers in

sequence for

a vector.

v <- 2:8

print(v)

it produces the following result:

[1] 2 3 4 5 6 7 8

%in%

This operator

is used to

identify if an

element

belongs to a

vector.

v1 <- 8

v2 <- 12

t <- 1:10

print(v1 %in% t)

print(v2 %in% t)

it produces the following result:

[1] TRUE

[1] FALSE

R Programming

23

%*%

This operator

is used to

multiply a

matrix with

its

transpose.

M = matrix(c(2,6,5,1,10,4), nrow=2,ncol=3,byrow =

TRUE)

t = M %*% t(M)

print(t)

it produces the following result:

 [,1] [,2]

[1,] 65 82

[2,] 82 117

R Programming

24

Decision making structures require the programmer to specify one or more conditions to

be evaluated or tested by the program, along with a statement or statements to be

executed if the condition is determined to be true, and optionally, other statements to be

executed if the condition is determined to be false.

Following is the general form of a typical decision making structure found in most of the

programming languages:

R provides the following types of decision making statements. Click the following links to

check their detail.

Statement Description

if statement

An if statement consists of a Boolean expression followed by one

or more statements.

if...else statement

An if statement can be followed by an optional else statement,

which executes when the Boolean expression is false.

switch statement

A switch statement allows a variable to be tested for equality

against a list of values.

7. R – Decision making

http://www.tutorialspoint.com/r/r_if_statement.htm
http://www.tutorialspoint.com/r/r_if_else_statement.htm
http://www.tutorialspoint.com/r/r_switch_statement.htm

R Programming

25

R - If Statement

An if statement consists of a Boolean expression followed by one or more statements.

Syntax

The basic syntax for creating an if statement in R is:

if(boolean_expression) {

 // statement(s) will execute if the boolean expression is true.

}

If the Boolean expression evaluates to be true, then the block of code inside the if

statement will be executed. If Boolean expression evaluates to be false, then the first set

of code after the end of the if statement (after the closing curly brace) will be executed.

Flow Diagram

Example

x <- 30L

if(is.integer(x)){

 print("X is an Integer")

}

When the above code is compiled and executed, it produces the following result:

[1] "X is an Integer"

R Programming

26

R – If...Else Statement

An if statement can be followed by an optional else statement which executes when the

boolean expression is false.

Syntax

The basic syntax for creating an if...else statement in R is:

if(boolean_expression) {

 // statement(s) will execute if the boolean expression is true.

} else {

 // statement(s) will execute if the boolean expression is false.

}

If the Boolean expression evaluates to be true, then the if block of code will be executed,

otherwise else block of code will be executed.

Flow Diagram

Example

x <- c("what","is","truth")

if("Truth" %in% x){

 print("Truth is found")

} else {

 print("Truth is not found")

}

When the above code is compiled and executed, it produces the following result:

R Programming

27

[1] "Truth is not found"

Here "Truth" and "truth" are two different strings.

The if...else if...else Statement

An if statement can be followed by an optional else if...else statement, which is very

useful to test various conditions using single if...else if statement.

When using if, else if, else statements there are few points to keep in mind.

 An if can have zero or one else and it must come after any else if's.

 An if can have zero to many else if's and they must come before the else.

 Once an else if succeeds, none of the remaining else if's or else's will be tested.

Syntax

The basic syntax for creating an if...else if...else statement in R is:

if(boolean_expression 1) {

 // Executes when the boolean expression 1 is true.

}else if(boolean_expression 2) {

 // Executes when the boolean expression 2 is true.

}else if(boolean_expression 3) {

 // Executes when the boolean expression 3 is true.

}else {

 // executes when none of the above condition is true.

}

Example

x <- c("what","is","truth")

if("Truth" %in% x){

 print("Truth is found the first time")

} else if ("truth" %in% x) {

 print("truth is found the second time")

} else {

 print("No truth found")

}

When the above code is compiled and executed, it produces the following result:

[1] "truth is found the second time"

R Programming

28

R – Switch Statement

A switch statement allows a variable to be tested for equality against a list of values. Each

value is called a case, and the variable being switched on is checked for each case.

Syntax

The basic syntax for creating a switch statement in R is :

switch(expression, case1, case2, case3....)

The following rules apply to a switch statement:

 If the value of expression is not a character string it is coerced to integer.

 You can have any number of case statements within a switch. Each case is followed

by the value to be compared to and a colon.

 If the value of the integer is between 1 and nargs()-1 (The max number of

arguments)then the corresponding element of case condition is evaluated and the

result returned.

 If expression evaluates to a character string then that string is matched (exactly)

to the names of the elements.

 If there is more than one match, the first matching element is returned.

 No Default argument is available.

 In the case of no match, if there is a unnamed element of ... its value is returned.

(If there is more than one such argument an error is returned.)

Flow Diagram

R Programming

29

Example

x <- switch(

 3,

 "first",

 "second",

 "third",

 "fourth"

)

print(x)

When the above code is compiled and executed, it produces the following result:

[1] "third"

R Programming

30

There may be a situation when you need to execute a block of code several number of

times. In general, statements are executed sequentially. The first statement in a function

is executed first, followed by the second, and so on.

Programming languages provide various control structures that allow for more complicated

execution paths.

A loop statement allows us to execute a statement or group of statements multiple times

and the following is the general form of a loop statement in most of the programming

languages:

R programming language provides the following kinds of loop to handle looping

requirements. Click the following links to check their detail.

Loop Type Description

repeat loop

Executes a sequence of statements multiple times and abbreviates the

code that manages the loop variable.

while loop

Repeats a statement or group of statements while a given condition is

true. It tests the condition before executing the loop body.

for loop

Like a while statement, except that it tests the condition at the end of

the loop body.

8. R – Loops

http://www.tutorialspoint.com/r/r_repeat_loop.htm
http://www.tutorialspoint.com/r/r_while_loop.htm
http://www.tutorialspoint.com/r/r_for_loop.htm

R Programming

31

R - Repeat Loop

The Repeat loop executes the same code again and again until a stop condition is met.

Syntax

The basic syntax for creating a repeat loop in R is:

repeat {

 commands

 if(condition){

 break

 }

}

Flow Diagram

Example

v <- c("Hello","loop")

cnt <- 2

repeat{

 print(v)

 cnt <- cnt+1

 if(cnt > 5){

 break

 }

R Programming

32

}

When the above code is compiled and executed, it produces the following result:

[1] "Hello" "loop"

[1] "Hello" "loop"

[1] "Hello" "loop"

[1] "Hello" "loop"

R - While Loop

The While loop executes the same code again and again until a stop condition is met.

Syntax

The basic syntax for creating a while loop in R is :

while (test_expression) {

 statement

}

Flow Diagram

R Programming

33

Here key point of the while loop is that the loop might not ever run. When the condition

is tested and the result is false, the loop body will be skipped and the first statement after

the while loop will be executed.

Example

v <- c("Hello","while loop")

cnt <- 2

while (cnt < 7){

 print(v)

 cnt = cnt + 1

}

When the above code is compiled and executed, it produces the following result :

[1] "Hello" "while loop"

[1] "Hello" "while loop"

[1] "Hello" "while loop"

[1] "Hello" "while loop"

[1] "Hello" "while loop"

R – For Loop

A for loop is a repetition control structure that allows you to efficiently write a loop that

needs to execute a specific number of times.

Syntax

The basic syntax for creating a for loop statement in R is:

for (value in vector) {

 statements

}

R Programming

34

Flow Diagram

R’s for loops are particularly flexible in that they are not limited to integers, or even

numbers in the input. We can pass character vectors, logical vectors, lists or expressions.

Example

v <- LETTERS[1:4]

for (i in v) {

 print(i)

}

When the above code is compiled and executed, it produces the following result:

[1] "A"

[1] "B"

[1] "C"

[1] "D"

Loop Control Statements

Loop control statements change execution from its normal sequence. When execution

leaves a scope, all automatic objects that were created in that scope are destroyed.

R supports the following control statements. Click the following links to check their detail.

R Programming

35

Control Statement Description

break statement

Terminates the loop statement and transfers execution to the

statement immediately following the loop.

Next statement
The next statement simulates the behavior of R switch.

R – Break Statement

The break statement in R programming language has the following two usages:

 When the break statement is encountered inside a loop, the loop is immediately

terminated and program control resumes at the next statement following the loop.

 It can be used to terminate a case in the switch statement (covered in the next

chapter).

Syntax

The basic syntax for creating a break statement in R is:

break

Flow Diagram

http://www.tutorialspoint.com/r/r_break_statement.htm
http://www.tutorialspoint.com/r/r_next_statement.htm

R Programming

36

Example

v <- c("Hello","loop")

cnt <- 2

repeat{

 print(v)

 cnt <- cnt+1

 if(cnt > 5){

 break

 }

}

When the above code is compiled and executed, it produces the following result:

[1] "Hello" "loop"

[1] "Hello" "loop"

[1] "Hello" "loop"

[1] "Hello" "loop"

R – Next Statement

The next statement in R programming language is useful when we want to

skip the current iteration of a loop without terminating it. On encountering

next, the R parser skips further evaluation and starts next iteration of the loop.

Syntax

The basic syntax for creating a next statement in R is:

next

R Programming

37

Flow Diagram

Example

v <- LETTERS[1:6]

for (i in v){

 if (i == "D"){

 next

 }

 print(i)

}

When the above code is compiled and executed, it produces the following result:

[1] "A"

[1] "B"

[1] "C"

[1] "E"

[1] "F"

R Programming

38

A function is a set of statements organized together to perform a specific task. R has a

large number of in-built functions and the user can create their own functions.

In R, a function is an object so the R interpreter is able to pass control to the function,

along with arguments that may be necessary for the function to accomplish the actions.

The function in turn performs its task and returns control to the interpreter as well as any

result which may be stored in other objects.

Function Definition

An R function is created by using the keyword function. The basic syntax of an R function

definition is as follows:

function_name <- function(arg_1, arg_2, ...) {

 Function body

}

Function Components

The different parts of a function are:

 Function Name: This is the actual name of the function. It is stored in R

environment as an object with this name.

 Arguments: An argument is a placeholder. When a function is invoked, you pass

a value to the argument. Arguments are optional; that is, a function may contain

no arguments. Also arguments can have default values.

 Function Body: The function body contains a collection of statements that defines

what the function does.

 Return Value: The return value of a function is the last expression in the function

body to be evaluated.

R has many in-built functions which can be directly called in the program without defining

them first. We can also create and use our own functions referred as user

defined functions.

Built-in Function

Simple examples of in-built functions are seq(), mean(), max(), sum(x)and paste(...) etc.

They are directly called by user written programs. You can refer most widely used R

functions.

9. R – Function

https://cran.r-project.org/doc/contrib/Short-refcard.pdf
https://cran.r-project.org/doc/contrib/Short-refcard.pdf

R Programming

39

Create a sequence of numbers from 32 to 44.

print(seq(32,44))

Find mean of numbers from 25 to 82.

print(mean(25:82))

Find sum of numbers frm 41 to 68.

print(sum(41:68))

When we execute the above code, it produces the following result:

[1] 32 33 34 35 36 37 38 39 40 41 42 43 44

[1] 53.5

[1] 1526

User-defined Function

We can create user-defined functions in R. They are specific to what a user wants and

once created they can be used like the built-in functions. Below is an example of how a

function is created and used.

Create a function to print squares of numbers in sequence.

new.function <- function(a) {

 for(i in 1:a) {

 b <- i^2

 print(b)

 }

 }

Calling a Function

 # Create a function to print squares of numbers in sequence.

new.function <- function(a) {

 for(i in 1:a) {

 b <- i^2

 print(b)

 }

 }

Call the function new.function supplying 6 as an argument.

R Programming

40

new.function(6)

When we execute the above code, it produces the following result:

[1] 1

[1] 4

[1] 9

[1] 16

[1] 25

[1] 36

Calling a Function without an Argument

Create a function without an argument.

new.function <- function() {

 for(i in 1:5) {

 print(i^2)

 }

 }

Call the function without supplying an argument.

new.function()

When we execute the above code, it produces the following result:

[1] 1

[1] 4

[1] 9

[1] 16

[1] 25

Calling a Function with Argument Values (by position and by name)

The arguments to a function call can be supplied in the same sequence as defined in the

function or they can be supplied in a different sequence but assigned to the names of the

arguments.

Create a function with arguments.

new.function <- function(a,b,c) {

 result <- a*b+c

 print(result)

 }

R Programming

41

Call the function by position of arguments.

new.function(5,3,11)

Call the function by names of the arguments.

new.function(a=11,b=5,c=3)

When we execute the above code, it produces the following result:

[1] 26

[1] 58

Calling a Function with Default Argument

We can define the value of the arguments in the function definition and call the function

without supplying any argument to get the default result. But we can also call such

functions by supplying new values of the argument and get non default result.

Create a function with arguments.

new.function <- function(a = 3,b =6) {

 result <- a*b

 print(result)

 }

Call the function without giving any argument.

new.function()

Call the function with giving new values of the argument.

new.function(9,5)

When we execute the above code, it produces the following result:

[1] 18

[1] 45

Lazy Evaluation of Function

Arguments to functions are evaluated lazily, which means so they are evaluated only when

needed by the function body.

Create a function with arguments.

new.function <- function(a, b) {

R Programming

42

 print(a^2)

 print(a)

 print(b)

 }

Evaluate the function without supplying one of the arguments.

new.function(6)

When we execute the above code, it produces the following result:

[1] 36

[1] 6

Error in print(b) : argument "b" is missing, with no default

R Programming

43

Any value written within a pair of single quote or double quotes in R is treated as a string.

Internally R stores every string within double quotes, even when you create them with

single quote.

Rules Applied in String Construction

 The quotes at the beginning and end of a string should be both double quotes or

both single quote. They can not be mixed.

 Double quotes can be inserted into a string starting and ending with single quote.

 Single quote can be inserted into a string starting and ending with double quotes.

 Double quotes can not be inserted into a string starting and ending with double

quotes.

 Single quote can not be inserted into a string starting and ending with single quote.

Examples of Valid Strings

Following examples clarify the rules about creating a string in R.

a <- 'Start and end with single quote'

print(a)

b <- "Start and end with double quotes"

print(b)

c <- "single quote ' in between double quotes"

print(c)

d <- 'Double quotes " in between single quote'

print(d)

When the above code is run we get the following output:

[1] "Start and end with single quote"

[1] "Start and end with double quotes"

[1] "single quote ' in between double quote"

[1] "Double quote \" in between single quote"

10. R – Strings

R Programming

44

Examples of Invalid Strings

e <- 'Mixed quotes"

print(e)

f <- 'Single quote ' inside single quote'

print(f)

g <- "Double quotes " inside double quotes"

print(g)

When we run the script it fails giving below results.

...: unexpected INCOMPLETE_STRING

.... unexpected symbol

1: f <- 'Single quote ' inside

unexpected symbol

1: g <- "Double quotes " inside

String Manipulation

Concatenating Strings - paste() function

Many strings in R are combined using the paste() function. It can take any number of

arguments to be combined together.

Syntax

The basic syntax for paste function is :

paste(..., sep = " ", collapse = NULL)

Following is the description of the parameters used:

 ... represents any number of arguments to be combined.

 sep represents any separator between the arguments. It is optional.

 collapse is used to eliminate the space in between two strings. But not the space

within two words of one string.

R Programming

45

Example

a <- "Hello"

b <- 'How'

c <- "are you? "

print(paste(a,b,c))

print(paste(a,b,c, sep = "-"))

print(paste(a,b,c, sep = "", collapse = ""))

When we execute the above code, it produces the following result:

[1] "Hello How are you? "

[1] "Hello-How-are you? "

[1] "HelloHoware you? "

Formatting numbers & strings - format() function

Numbers and strings can be formatted to a specific style using format()function.

Syntax

The basic syntax for format function is :

format(x, digits, nsmall,scientific,width,justify = c("left", "right",

"centre", "none"))

Following is the description of the parameters used:

 x is the vector input.

 digits is the total number of digits displayed.

 nsmall is the minimum number of digits to the right of the decimal point.

 scientific is set to TRUE to display scientific notation.

 width indicates the minimum width to be displayed by padding blanks in the

beginning.

 justify is the display of the string to left, right or center.

R Programming

46

Example

Total number of digits displayed. Last digit rounded off.

result <- format(23.123456789, digits = 9)

print(result)

Display numbers in scientific notation.

result <- format(c(6, 13.14521), scientific = TRUE)

print(result)

The minimum number of digits to the right of the decimal point.

result <- format(23.47, nsmall = 5)

print(result)

Format treats everything as a string.

result <- format(6)

print(result)

Numbers are padded with blank in the beginning for width.

result <- format(13.7, width = 6)

print(result)

Left justify strings.

result <- format("Hello",width = 8, justify = "l")

print(result)

Justfy string with center.

result <- format("Hello",width = 8, justify = "c")

print(result)

When we execute the above code, it produces the following result:

[1] "23.1234568"

[1] "6.000000e+00" "1.314521e+01"

[1] "23.47000"

[1] "6"

[1] " 13.7"

[1] "Hello "

R Programming

47

[1] " Hello "

Counting number of characters in a string - nchar() function

This function counts the number of characters including spaces in a string.

Syntax

The basic syntax for nchar() function is :

nchar(x)

Following is the description of the parameters used:

 x is the vector input.

Example

result <- nchar("Count the number of characters")

print(result)

When we execute the above code, it produces the following result:

[1] 30

Changing the case - toupper() & tolower() functions

These functions change the case of characters of a string.

Syntax

The basic syntax for toupper() & tolower() function is :

toupper(x)

tolower(x)

Following is the description of the parameters used:

 x is the vector input.

Example

Changing to Upper case.

result <- toupper("Changing To Upper")

print(result)

Changing to lower case.

R Programming

48

result <- tolower("Changing To Lower")

print(result)

When we execute the above code, it produces the following result:

[1] "CHANGING TO UPPER"

[1] "changing to lower"

Extracting parts of a string - substring() function

This function extracts parts of a String.

Syntax

The basic syntax for substring() function is :

substring(x,first,last)

Following is the description of the parameters used:

 x is the character vector input.

 first is the position of the first character to be extracted.

 last is the position of the last character to be extracted.

Example

Extract characters from 5th to 7th position.

result <- substring("Extract", 5, 7)

print(result)

When we execute the above code, it produces the following result:

[1] "act"

R Programming

49

Vectors are the most basic R data objects and there are six types of atomic vectors. They

are logical, integer, double, complex, character and raw.

Vector Creation

Single Element Vector

Even when you write just one value in R, it becomes a vector of length 1 and belongs to

one of the above vector types.

Atomic vector of type character.

print("abc");

Atomic vector of type double.

print(12.5)

Atomic vector of type integer.

print(63L)

Atomic vector of type logical.

print(TRUE)

Atomic vector of type complex.

print(2+3i)

Atomic vector of type raw.

print(charToRaw('hello'))

When we execute the above code, it produces the following result:

[1] "abc"

[1] 12.5

[1] 63

[1] TRUE

[1] 2+3i

[1] 68 65 6c 6c 6f

11. R – Vectors

R Programming

50

Multiple Elements Vector

Using colon operator with numeric data

Creating a sequence from 5 to 13.

v <- 5:13

print(v)

Creating a sequence from 6.6 to 12.6.

v <- 6.6:12.6

print(v)

If the final element specified does not belong to the sequence then it is

discarded.

v <- 3.8:11.4

print(v)

When we execute the above code, it produces the following result:

[1] 5 6 7 8 9 10 11 12 13

[1] 6.6 7.6 8.6 9.6 10.6 11.6 12.6

[1] 3.8 4.8 5.8 6.8 7.8 8.8 9.8 10.8

Using sequence (Seq.) operator

Create vector with elements from 5 to 9 incrementing by 0.4.

print(seq(5, 9, by=0.4))

When we execute the above code, it produces the following result:

 [1] 5.0 5.4 5.8 6.2 6.6 7.0 7.4 7.8 8.2 8.6 9.0

Using the c() function

The non-character values are coerced to character type if one of the elements is a

character.

The logical and numeric values are converted to characters.

s <- c('apple','red',5,TRUE)

print(s)

When we execute the above code, it produces the following result:

[1] "apple" "red" "5" "TRUE"

R Programming

51

Accessing Vector Elements

Elements of a Vector are accessed using indexing. The [] brackets are used for indexing.

Indexing starts with position 1. Giving a negative value in the index drops that element

from result. TRUE, FALSE or 0 and 1 can also be used for indexing.

Accessing vector elements using position.

t <- c("Sun","Mon","Tue","Wed","Thurs","Fri","Sat")

u <- t[c(2,3,6)]

print(u)

Accessing vector elements using logical indexing.

v <- t[c(TRUE,FALSE,FALSE,FALSE,FALSE,TRUE,FALSE)]

print(v)

Accessing vector elements using negative indexing.

x <- t[c(-2,-5)]

print(x)

Accessing vector elements using 0/1 indexing.

y <- t[c(0,0,0,0,0,0,1)]

print(y)

When we execute the above code, it produces the following result:

[1] "Mon" "Tue" "Fri"

[1] "Sun" "Fri"

[1] "Sun" "Tue" "Wed" "Fri" "Sat"

[1] "Sun"

Vector Manipulation

Vector Arithmetic

Two vectors of same length can be added, subtracted, multiplied or divided giving the

result as a vector output.

Create two vectors.

v1 <- c(3,8,4,5,0,11)

v2 <- c(4,11,0,8,1,2)

Vector addition.

R Programming

52

add.result <- v1+v2

print(add.result)

Vector substraction.

sub.result <- v1-v2

print(sub.result)

Vector multiplication.

multi.result <- v1*v2

print(multi.result)

Vector division.

divi.result <- v1/v2

print(divi.result)

When we execute the above code, it produces the following result:

[1] 7 19 4 13 1 13

[1] -1 -3 4 -3 -1 9

[1] 12 88 0 40 0 22

[1] 0.7500000 0.7272727 Inf 0.6250000 0.0000000 5.5000000

Vector Element Recycling

If we apply arithmetic operations to two vectors of unequal length, then the elements of

the shorter vector are recycled to complete the operations.

v1 <- c(3,8,4,5,0,11)

v2 <- c(4,11)

V2 becomes c(4,11,4,11,4,11)

add.result <- v1+v2

print(add.result)

sub.result <- v1-v2

print(sub.result)

R Programming

53

When we execute the above code, it produces the following result:

[1] 7 19 8 16 4 22

[1] -1 -3 0 -6 -4 0

Vector Element Sorting

Elements in a vector can be sorted using the sort() function.

v <- c(3,8,4,5,0,11, -9, 304)

Sort the elements of the vector.

sort.result <- sort(v)

print(sort.result)

Sort the elements in the reverse order.

revsort.result <- sort(v, decreasing = TRUE)

print(revsort.result)

Sorting character vectors.

v <- c("Red","Blue","yellow","violet")

sort.result <- sort(v)

print(sort.result)

Sorting character vectors in reverse order.

revsort.result <- sort(v, decreasing = TRUE)

print(revsort.result)

When we execute the above code, it produces the following result:

[1] -9 0 3 4 5 8 11 304

[1] 304 11 8 5 4 3 0 -9

[1] "Blue" "Red" "violet" "yellow"

[1] "yellow" "violet" "Red" "Blue"

R Programming

54

Lists are the R objects which contain elements of different types like - numbers, strings,

vectors and another list inside it. A list can also contain a matrix or a function as its

elements. List is created using list() function.

Creating a List

Following is an example to create a list containing strings, numbers, vectors and a logical

values

Create a list containing strings, numbers, vectors and a logical values.

list_data <- list("Red", "Green", c(21,32,11), TRUE, 51.23, 119.1)

print(list_data)

When we execute the above code, it produces the following result:

[[1]]

[1] "Red"

[[2]]

[1] "Green"

[[3]]

[1] 21 32 11

[[4]]

[1] TRUE

[[5]]

[1] 51.23

[[6]]

[1] 119.1

12. R – Lists

R Programming

55

Naming List Elements

The list elements can be given names and they can be accessed using these names.

Create a list containing a vector, a matrix and a list.

list_data <- list(c("Jan","Feb","Mar"), matrix(c(3,9,5,1,-2,8), nrow=2),

list("green",12.3))

Give names to the elements in the list.

names(list_data) <- c("1st Quarter", "A_Matrix", "A Inner list")

Show the list.

print(list_data)

When we execute the above code, it produces the following result:

$`1st_Quarter`

[1] "Jan" "Feb" "Mar"

$A_Matrix

 [,1] [,2] [,3]

[1,] 3 5 -2

[2,] 9 1 8

$A_Inner_list

$A_Inner_list[[1]]

[1] "green"

$A_Inner_list[[2]]

[1] 12.3

Accessing List Elements

Elements of the list can be accessed by the index of the element in the list. In case of

named lists it can also be accessed using the names.

We continue to use the list in the above example:

Create a list containing a vector, a matrix and a list.

list_data <- list(c("Jan","Feb","Mar"), matrix(c(3,9,5,1,-2,8), nrow=2),

list("green",12.3))

R Programming

56

Give names to the elements in the list.

names(list_data) <- c("1st Quarter", "A_Matrix", "A Inner list")

Access the first element of the list.

print(list_data[1])

Access the thrid element. As it is also a list, all its elements will be

printed.

print(list_data[3])

Access the list element using the name of the element.

print(list_data$A_Matrix)

When we execute the above code, it produces the following result:

$`1st_Quarter`

[1] "Jan" "Feb" "Mar"

$A_Inner_list

$A_Inner_list[[1]]

[1] "green"

$A_Inner_list[[2]]

[1] 12.3

 [,1] [,2] [,3]

[1,] 3 5 -2

[2,] 9 1 8

Manipulating List Elements

We can add, delete and update list elements as shown below. We can add and delete

elements only at the end of a list. But we can update any element.

Create a list containing a vector, a matrix and a list.

list_data <- list(c("Jan","Feb","Mar"), matrix(c(3,9,5,1,-2,8), nrow=2),

list("green",12.3))

Give names to the elements in the list.

names(list_data) <- c("1st Quarter", "A_Matrix", "A Inner list")

R Programming

57

Add element at the end of the list.

list_data[4] <- "New element"

print(list_data[4])

Remove the last element.

list_data[4] <- NULL

Print the 4th Element.

print(list_data[4])

Update the 3rd Element.

list_data[3] <- "updated element"

print(list_data[3])

When we execute the above code, it produces the following result:

[[1]]

[1] "New element"

$

NULL

$`A Inner list`

[1] "updated element"

Merging Lists

You can merge many lists into one list by placing all the lists inside one list() function.

Create two lists.

list1 <- list(1,2,3)

list2 <- list("Sun","Mon","Tue")

Merge the two lists.

merged.list <- c(list1,list2)

Print the merged list.

R Programming

58

print(merged.list)

When we execute the above code, it produces the following result :

[[1]]

[1] 1

[[2]]

[1] 2

[[3]]

[1] 3

[[4]]

[1] "Sun"

[[5]]

[1] "Mon"

[[6]]

[1] "Tue"

Converting List to Vector

A list can be converted to a vector so that the elements of the vector can be used for

further manipulation. All the arithmetic operations on vectors can be applied after the list

is converted into vectors. To do this conversion, we use the unlist() function. It takes the

list as input and produces a vector.

Create lists.

list1 <- list(1:5)

print(list1)

list2 <-list(10:14)

print(list2)

Convert the lists to vectors.

v1 <- unlist(list1)

v2 <- unlist(list2)

R Programming

59

print(v1)

print(v2)

Now add the vectors

result <- v1+v2

print(result)

When we execute the above code, it produces the following result :

[[1]]

[1] 1 2 3 4 5

[[1]]

[1] 10 11 12 13 14

[1] 1 2 3 4 5

[1] 10 11 12 13 14

[1] 11 13 15 17 19

R Programming

60

Matrices are the R objects in which the elements are arranged in a two-dimensional

rectangular layout. They contain elements of the same atomic types. Though we can create

a matrix containing only characters or only logical values, they are not of much use. We

use matrices containing numeric elements to be used in mathematical calculations.

A Matrix is created using the matrix() function.

Syntax

The basic syntax for creating a matrix in R is:

matrix(data, nrow, ncol, byrow, dimnames)

Following is the description of the parameters used:

 data is the input vector which becomes the data elements of the matrix.

 nrow is the number of rows to be created.

 ncol is the number of columns to be created.

 byrow is a logical clue. If TRUE then the input vector elements are arranged by

row.

 dimname is the names assigned to the rows and columns.

Example

Create a matrix taking a vector of numbers as input

Elements are arranged sequentially by row.

M <- matrix(c(3:14), nrow=4, byrow=TRUE)

print(M)

Elements are arranged sequentially by column.

N <- matrix(c(3:14), nrow=4, byrow=FALSE)

print(N)

Define the column and row names.

rownames = c("row1", "row2", "row3", "row4")

colnames = c("col1", "col2", "col3")

13. R – Matrices

R Programming

61

P <- matrix(c(3:14), nrow=4, byrow=TRUE, dimnames=list(rownames, colnames))

print(P)

When we execute the above code, it produces the following result:

 [,1] [,2] [,3]

[1,] 3 4 5

[2,] 6 7 8

[3,] 9 10 11

[4,] 12 13 14

 [,1] [,2] [,3]

[1,] 3 7 11

[2,] 4 8 12

[3,] 5 9 13

[4,] 6 10 14

 col1 col2 col3

row1 3 4 5

row2 6 7 8

row3 9 10 11

row4 12 13 14

Accessing Elements of a Matrix

Elements of a matrix can be accessed by using the column and row index of the element.

We consider the matrix P above to find the specific elements below.

Define the column and row names.

rownames = c("row1", "row2", "row3", "row4")

colnames = c("col1", "col2", "col3")

Create the matrix.

P <- matrix(c(3:14), nrow=4, byrow=TRUE, dimnames=list(rownames, colnames))

Access the element at 3rd column and 1st row.

print(P[1,3])

Access the element at 2nd column and 4th row.

print(P[4,2])

R Programming

62

Access only the 2nd row.

print(P[2,])

Access only the 3rd column.

print(P[,3])

When we execute the above code, it produces the following result:

[1] 5

[1] 13

col1 col2 col3

 6 7 8

row1 row2 row3 row4

 5 8 11 14

Matrix Computations

Various mathematical operations are performed on the matrices using the R operators.

The result of the operation is also a matrix.

The dimensions (number of rows and columns) should be same for the matrices involved

in the operation.

Matrix Addition & Subtraction

Create two 2x3 matrices.

matrix1 <- matrix(c(3, 9, -1, 4, 2, 6), nrow=2)

print(matrix1)

matrix2 <- matrix(c(5, 2, 0, 9, 3, 4), nrow=2)

print(matrix2)

Add the matrices.

result <- matrix1 + matrix2

cat("Result of addition","\n")

print(result)

Subtract the matrices

result <- matrix1 - matrix2

cat("Result of subtraction","\n")

R Programming

63

print(result)

When we execute the above code, it produces the following result:

 [,1] [,2] [,3]

[1,] 3 -1 2

[2,] 9 4 6

 [,1] [,2] [,3]

[1,] 5 0 3

[2,] 2 9 4

Result of addition

 [,1] [,2] [,3]

[1,] 8 -1 5

[2,] 11 13 10

Result of subtraction

 [,1] [,2] [,3]

[1,] -2 -1 -1

[2,] 7 -5 2

Matrix Multiplication & Division

Create two 2x3 matrices.

matrix1 <- matrix(c(3, 9, -1, 4, 2, 6), nrow=2)

print(matrix1)

matrix2 <- matrix(c(5, 2, 0, 9, 3, 4), nrow=2)

print(matrix2)

Multiply the matrices.

result <- matrix1 * matrix2

cat("Result of multiplication","\n")

print(result)

Divide the matrices

result <- matrix1 / matrix2

cat("Result of division","\n")

print(result)

When we execute the above code, it produces the following result:

R Programming

64

 [,1] [,2] [,3]

[1,] 3 -1 2

[2,] 9 4 6

 [,1] [,2] [,3]

[1,] 5 0 3

[2,] 2 9 4

Result of multiplication

 [,1] [,2] [,3]

[1,] 15 0 6

[2,] 18 36 24

Result of division

 [,1] [,2] [,3]

[1,] 0.6 -Inf 0.6666667

[2,] 4.5 0.4444444 1.5000000

R Programming

65

Arrays are the R data objects which can store data in more than two dimensions. For

example - If we create an array of dimension (2, 3, 4) then it creates 4 rectangular

matrices each with 2 rows and 3 columns. Arrays can store only data type.

An array is created using the array() function. It takes vectors as input and uses the

values in the dim parameter to create an array.

Example

The following example creates an array of two 3x3 matrices each with 3 rows and 3

columns.

Create two vectors of different lengths.

vector1 <- c(5,9,3)

vector2 <- c(10,11,12,13,14,15)

Take these vectors as input to the array.

result <- array(c(vector1,vector2),dim=c(3,3,2))

print(result)

When we execute the above code, it produces the following result:

, , 1

 [,1] [,2] [,3]

[1,] 5 10 13

[2,] 9 11 14

[3,] 3 12 15

, , 2

 [,1] [,2] [,3]

[1,] 5 10 13

[2,] 9 11 14

[3,] 3 12 15

14. R – Arrays

R Programming

66

Naming Columns and Rows

We can give names to the rows, columns and matrices in the array by using the

dimnames parameter.

Create two vectors of different lengths.

vector1 <- c(5,9,3)

vector2 <- c(10,11,12,13,14,15)

column.names <- c("COL1","COL2","COL3")

row.names <- c("ROW1","ROW2","ROW3")

matrix.names <- c("Matrix1","Matrix2")

Take these vectors as input to the array.

result <- array(c(vector1,vector2),dim=c(3,3,2),dimnames =

list(column.names,row.names,matrix.names))

print(result)

When we execute the above code, it produces the following result:

, , Matrix1

 ROW1 ROW2 ROW3

COL1 5 10 13

COL2 9 11 14

COL3 3 12 15

, , Matrix2

 ROW1 ROW2 ROW3

COL1 5 10 13

COL2 9 11 14

COL3 3 12 15

Accessing Array Elements

Create two vectors of different lengths.

vector1 <- c(5,9,3)

vector2 <- c(10,11,12,13,14,15)

column.names <- c("COL1","COL2","COL3")

row.names <- c("ROW1","ROW2","ROW3")

R Programming

67

matrix.names <- c("Matrix1","Matrix2")

Take these vectors as input to the array.

result <- array(c(vector1,vector2),dim=c(3,3,2),dimnames =

list(column.names,row.names,matrix.names))

Print the third row of the second matrix of the array.

print(result[3,,2])

Print the element in the 1st row and 3rd column of the 1st matrix.

print(result[1,3,1])

Print the 2nd Matrix.

print(result[,,2])

When we execute the above code, it produces the following result:

ROW1 ROW2 ROW3

 3 12 15

[1] 13

 ROW1 ROW2 ROW3

COL1 5 10 13

COL2 9 11 14

COL3 3 12 15

Manipulating Array Elements

As array is made up matrices in multiple dimensions, the operations on elements of array

are carried out by accessing elements of the matrices.

Create two vectors of different lengths.

vector1 <- c(5,9,3)

vector2 <- c(10,11,12,13,14,15)

Take these vectors as input to the array.

array1 <- array(c(vector1,vector2),dim=c(3,3,2))

Create two vectors of different lengths.

vector3 <- c(9,1,0)

R Programming

68

vector4 <- c(6,0,11,3,14,1,2,6,9)

array2 <- array(c(vector1,vector2),dim=c(3,3,2))

create matrices from these arrays.

matrix1 <- array1[,,2]

matrix2 <- array2[,,2]

Add the matrices.

result <- matrix1+matrix2

print(result)

When we execute the above code, it produces the following result:

 [,1] [,2] [,3]

[1,] 10 20 26

[2,] 18 22 28

[3,] 6 24 30

Calculations Across Array Elements

We can do calculations across the elements in an array using the apply()function.

Syntax

apply(x, margin, fun)

Following is the description of the parameters used:

 x is an array.

 margin is the name of the data set used.

 fun is the function to be applied across the elements of the array.

Example

We use the apply() function below to calculate the sum of the elements in the rows of an

array across all the matrices.

Create two vectors of different lengths.

vector1 <- c(5,9,3)

vector2 <- c(10,11,12,13,14,15)

Take these vectors as input to the array.

new.array <- array(c(vector1,vector2),dim=c(3,3,2))

R Programming

69

print(new.array)

Use apply to calculate the sum of the rows across all the matrices.

result <- apply(new.array, c(1), sum)

print(result)

When we execute the above code, it produces the following result:

, , 1

 [,1] [,2] [,3]

[1,] 5 10 13

[2,] 9 11 14

[3,] 3 12 15

, , 2

 [,1] [,2] [,3]

[1,] 5 10 13

[2,] 9 11 14

[3,] 3 12 15

[1] 56 68 60

R Programming

70

Factors are the data objects which are used to categorize the data and store it as levels.

They can store both strings and integers. They are useful in the columns which have a

limited number of unique values. Like "Male, "Female" and True, False etc. They are useful

in data analysis for statistical modeling.

Factors are created using the factor () function by taking a vector as input.

Example

Create a vector as input.

data <-
c("East","West","East","North","North","East","West","West","West","East","North")

print(data)

print(is.factor(data))

Apply the factor function.

factor_data <- factor(data)

print(factor_data)

print(is.factor(factor_data))

When we execute the above code, it produces the following result:

 [1] "East" "West" "East" "North" "North" "East" "West" "West" "West"

"East" "North"

[1] FALSE

 [1] East West East North North East West West West East North

Levels: East North West

[1] TRUE

Factors in Data Frame

On creating any data frame with a column of text data, R treats the text column as

categorical data and creates factors on it.

Create the vectors for data frame.

height <- c(132,151,162,139,166,147,122)

weight <- c(48,49,66,53,67,52,40)

gender <- c("male","male","female","female","male","female","male")

15. R – Factors

R Programming

71

Create the data frame.

input_data <- data.frame(height,weight,gender)

print(input_data)

Test if the gender column is a factor.

print(is.factor(input_data$gender))

Print the gender column so see the levels.

print(input_data$gender)

When we execute the above code, it produces the following result:

 height weight gender

1 132 48 male

2 151 49 male

3 162 66 female

4 139 53 female

5 166 67 male

6 147 52 female

7 122 40 male

[1] TRUE

[1] male male female female male female male

Levels: female male

Changing the Order of Levels

The order of the levels in a factor can be changed by applying the factor function again

with new order of the levels.

data <-
c("East","West","East","North","North","East","West","West","West","East","North")

Create the factors

factor_data <- factor(data)

print(factor_data)

Apply the factor function with required order of the level.

new_order_data <- factor(factor_data,levels = c("East","West","North"))

print(new_order_data)

R Programming

72

When we execute the above code, it produces the following result:

 [1] East West East North North East West West West East North

Levels: East North West

 [1] East West East North North East West West West East North

Levels: East West North

Generating Factor Levels

We can generate factor levels by using the gl() function. It takes two integers as input

which indicates how many levels and how many times each level.

Syntax

gl(n, k, labels)

Following is the description of the parameters used:

 n is a integer giving the number of levels.

 k is a integer giving the number of replications.

 labels is a vector of labels for the resulting factor levels.

Example

v <- gl(3, 4, labels = c("Tampa", "Seattle","Boston"))

print(v)

When we execute the above code, it produces the following result:

Tampa Tampa Tampa Tampa Seattle Seattle Seattle Seattle Boston

[10] Boston Boston Boston

Levels: Tampa Seattle Boston

R Programming

73

A data frame is a table or a two-dimensional array-like structure in which each column

contains values of one variable and each row contains one set of values from each column.

Following are the characteristics of a data frame.

 The column names should be non-empty.

 The row names should be unique.

 The data stored in a data frame can be of numeric, factor or character type.

 Each column should contain same number of data items.

Create Data Frame

Create the data frame.

emp.data <- data.frame(

 emp_id = c (1:5),

 emp_name = c("Rick","Dan","Michelle","Ryan","Gary"),

 salary = c(623.3,515.2,611.0,729.0,843.25),

 start_date = as.Date(c("2012-01-01","2013-09-23","2014-11-15","2014-05-

11","2015-03-27")),

 stringsAsFactors=FALSE

)

Print the data frame.

print(emp.data)

When we execute the above code, it produces the following result:

 emp_id emp_name salary start_date

1 1 Rick 623.30 2012-01-01

2 2 Dan 515.20 2013-09-23

3 3 Michelle 611.00 2014-11-15

4 4 Ryan 729.00 2014-05-11

5 5 Gary 843.25 2015-03-27

16. R – Data Frames

R Programming

74

Get the Structure of the Data Frame

The structure of the data frame can be seen by using str() function.

Create the data frame.

emp.data <- data.frame(

 emp_id = c (1:5),

 emp_name = c("Rick","Dan","Michelle","Ryan","Gary"),

 salary = c(623.3,515.2,611.0,729.0,843.25),

 start_date = as.Date(c("2012-01-01","2013-09-23","2014-11-15","2014-05-

11","2015-03-27")),

 stringsAsFactors=FALSE

)

Get the structure of the data frame.

str(emp.data)

When we execute the above code, it produces the following result:

'data.frame': 5 obs. of 4 variables:

 $ emp_id : int 1 2 3 4 5

 $ emp_name : chr "Rick" "Dan" "Michelle" "Ryan" ...

 $ salary : num 623 515 611 729 843

 $ start_date: Date, format: "2012-01-01" "2013-09-23" "2014-11-15" "2014-05-

11" ...

Summary of Data in Data Frame

The statistical summary and nature of the data can be obtained by applying

summary() function.

Create the data frame.

emp.data <- data.frame(

 emp_id = c (1:5),

 emp_name = c("Rick","Dan","Michelle","Ryan","Gary"),

 salary = c(623.3,515.2,611.0,729.0,843.25),

 start_date = as.Date(c("2012-01-01","2013-09-23","2014-11-15","2014-05-

11","2015-03-27")),

 stringsAsFactors=FALSE

)

Print the summary.

print(summary(emp.data))

When we execute the above code, it produces the following result:

R Programming

75

 emp_id emp_name salary start_date

 Min. :1 Length:5 Min. :515.2 Min. :2012-01-01

 1st Qu.:2 Class :character 1st Qu.:611.0 1st Qu.:2013-09-23

 Median :3 Mode :character Median :623.3 Median :2014-05-11

 Mean :3 Mean :664.4 Mean :2014-01-14

 3rd Qu.:4 3rd Qu.:729.0 3rd Qu.:2014-11-15

 Max. :5 Max. :843.2 Max. :2015-03-27

Extract Data from Data Frame

Extract specific column from a data frame using column name.

Create the data frame.

emp.data <- data.frame(

 emp_id = c (1:5),

 emp_name = c("Rick","Dan","Michelle","Ryan","Gary"),

 salary = c(623.3,515.2,611.0,729.0,843.25),

 start_date = as.Date(c("2012-01-01","2013-09-23","2014-11-15","2014-05-

11","2015-03-27")),

 stringsAsFactors=FALSE

)

Extract Specific columns.

result <- data.frame(emp.data$emp_name,emp.data$salary)

print(result)

When we execute the above code, it produces the following result:

 emp.data.emp_name emp.data.salary

1 Rick 623.30

2 Dan 515.20

3 Michelle 611.00

4 Ryan 729.00

5 Gary 843.25

Extract the first two rows and then all columns

Create the data frame.

emp.data <- data.frame(

 emp_id = c (1:5),

 emp_name = c("Rick","Dan","Michelle","Ryan","Gary"),

R Programming

76

 salary = c(623.3,515.2,611.0,729.0,843.25),

 start_date = as.Date(c("2012-01-01","2013-09-23","2014-11-15","2014-05-

11","2015-03-27")),

 stringsAsFactors=FALSE

)

Extract first two rows.

result <- emp.data[1:2,]

print(result)

When we execute the above code, it produces the following result:

emp_id emp_name salary start_date

1 1 Rick 623.3 2012-01-01

2 2 Dan 515.2 2013-09-23

Extract 3rd and 5th row with 2nd and 4th column

Create the data frame.

emp.data <- data.frame(

 emp_id = c (1:5),

 emp_name = c("Rick","Dan","Michelle","Ryan","Gary"),

 salary = c(623.3,515.2,611.0,729.0,843.25),

 start_date = as.Date(c("2012-01-01","2013-09-23","2014-11-15","2014-05-

11","2015-03-27")),

 stringsAsFactors=FALSE

)

Extract 3rd and 5th row with 2nd and 4th column.

result <- emp.data[c(3,5),c(2,4)]

print(result)

When we execute the above code, it produces the following result:

 emp_name start_date

3 Michelle 2014-11-15

5 Gary 2015-03-27

Expand Data Frame

A data frame can be expanded by adding columns and rows.

Add Column

R Programming

77

Just add the column vector using a new column name.

Create the data frame.

emp.data <- data.frame(

 emp_id = c (1:5),

 emp_name = c("Rick","Dan","Michelle","Ryan","Gary"),

 salary = c(623.3,515.2,611.0,729.0,843.25),

 start_date = as.Date(c("2012-01-01","2013-09-23","2014-11-15","2014-05-

11","2015-03-27")),

 stringsAsFactors=FALSE

)

Add the "dept" coulmn.

emp.data$dept <- c("IT","Operations","IT","HR","Finance")

v <- emp.data

print(v)

When we execute the above code, it produces the following result:

emp_id emp_name salary start_date dept

1 1 Rick 623.30 2012-01-01 IT

2 2 Dan 515.20 2013-09-23 Operations

3 3 Michelle 611.00 2014-11-15 IT

4 4 Ryan 729.00 2014-05-11 HR

5 5 Gary 843.25 2015-03-27 Finance

Add Row

To add more rows permanently to an existing data frame, we need to bring in the new

rows in the same structure as the existing data frame and use the rbind() function.

In the example below we create a data frame with new rows and merge it with the existing

data frame to create the final data frame.

Create the first data frame.

emp.data <- data.frame(

 emp_id = c (1:5),

 emp_name = c("Rick","Dan","Michelle","Ryan","Gary"),

 salary = c(623.3,515.2,611.0,729.0,843.25),

 start_date = as.Date(c("2012-01-01","2013-09-23","2014-11-15","2014-05-

11","2015-03-27")),

 dept=c("IT","Operations","IT","HR","Finance"),

R Programming

78

 stringsAsFactors=FALSE

)

Create the second data frame

emp.newdata <- data.frame(

 emp_id = c (6:8),

 emp_name = c("Rasmi","Pranab","Tusar"),

 salary = c(578.0,722.5,632.8),

 start_date = as.Date(c("2013-05-21","2013-07-30","2014-06-17")),

 dept = c("IT","Operations","Fianance"),

 stringsAsFactors=FALSE

)

Bind the two data frames.

emp.finaldata <- rbind(emp.data,emp.newdata)

print(emp.finaldata)

When we execute the above code, it produces the following result:

 emp_id emp_name salary start_date dept

1 1 Rick 623.30 2012-01-01 IT

2 2 Dan 515.20 2013-09-23 Operations

3 3 Michelle 611.00 2014-11-15 IT

4 4 Ryan 729.00 2014-05-11 HR

5 5 Gary 843.25 2015-03-27 Finance

6 6 Rasmi 578.00 2013-05-21 IT

7 7 Pranab 722.50 2013-07-30 Operations

8 8 Tusar 632.80 2014-06-17 Fianance

R Programming

79

R packages are a collection of R functions, complied code and sample data. They are stored

under a directory called "library" in the R environment. By default, R installs a set of

packages during installation. More packages are added later, when they are needed for

some specific purpose. When we start the R console, only the default packages are

available by default. Other packages which are already installed have to be loaded

explicitly to be used by the R program that is going to use them.

All the packages available in R language are listed at R Packages.

Below is a list of commands to be used to check, verify and use the R packages.

Check Available R Packages

Get library locations containing R packages

.libPaths()

When we execute the above code, it produces the following result. It may vary depending

on the local settings of your pc.

[2] "C:/Program Files/R/R-3.2.2/library"

Get the list of all the packages installed

library()

When we execute the above code, it produces the following result. It may vary depending

on the local settings of your pc.

Packages in library ‘C:/Program Files/R/R-3.2.2/library’:

base The R Base Package

boot Bootstrap Functions (Originally by Angelo Canty

 for S)

class Functions for Classification

cluster "Finding Groups in Data": Cluster Analysis

 Extended Rousseeuw et al.

codetools Code Analysis Tools for R

compiler The R Compiler Package

Get all packages currently loaded in the R environment

search()

17. R – Packages

https://cran.r-project.org/web/packages/available_packages_by_name.html

R Programming

80

When we execute the above code, it produces the following result. It may vary depending

on the local settings of your pc.

[1] ".GlobalEnv" "package:stats" "package:graphics"

[4] "package:grDevices" "package:utils" "package:datasets"

[7] "package:methods" "Autoloads" "package:base"

Install a New Package

There are two ways to add new R packages. One is installing directly from the CRAN

directory and another is downloading the package to your local system and installing it

manually.

Install directly from CRAN

The following command gets the packages directly from CRAN webpage and installs the

package in the R environment. You may be prompted to choose a nearest mirror. Choose

the one appropriate to your location.

 install.packages("Package Name")

Install the package named "XML".

 install.packages("XML")

Install package manually

Go to the link R Packages to download the package needed. Save the package as a .zip file

in a suitable location in the local system.

Now you can run the following command to install this package in the R environment.

install.packages(file_name_with_path, repos = NULL, type="source")

Install the package named "XML"

install.packages("E:/XML_3.98-1.3.zip", repos = NULL, type="source")

Load Package to Library

Before a package can be used in the code, it must be loaded to the current R environment.

You also need to load a package that is already installed previously but not available in

the current environment.

https://cran.r-project.org/web/packages/available_packages_by_name.html

R Programming

81

A package is loaded using the following command:

library("package Name", lib.loc="path to library")

Load the package named "XML"

install.packages("E:/XML_3.98-1.3.zip", repos = NULL, type="source")

R Programming

82

Data Reshaping in R is about changing the way data is organized into rows and columns.

Most of the time data processing in R is done by taking the input data as a data frame. It

is easy to extract data from the rows and columns of a data frame but there are situations

when we need the data frame in a format that is different from format in which we received

it. R has many functions to split, merge and change the rows to columns and vice-versa

in a data frame.

Joining Columns and Rows in a Data Frame

We can join multiple vectors to create a data frame using the cbind()function. Also we

can merge two data frames using rbind() function.

Create vector objects.

city <- c("Tampa","Seattle","Hartford","Denver")

state <- c("FL","WA","CT","CO")

zipcode <- c(33602,98104,06161,80294)

Combine above three vectors into one data frame.

addresses <- cbind(city,state,zipcode)

Print a header.

cat("# # # # The First data frame\n")

Print the data frame.

print(addresses)

Create another data frame with similar columns

new.address <- data.frame(

 city = c("Lowry","Charlotte"),

 state = c("CO","FL"),

 zipcode = c("80230","33949"),

 stringsAsFactors=FALSE

)

Print a header.

cat("# # # The Second data frame\n")

18. R – Data Reshaping

R Programming

83

Print the data frame.

print(new.address)

Combine rows form both the data frames.

all.addresses <- rbind(addresses,new.address)

Print a header.

cat("# # # The combined data frame\n")

Print the result.

print(all.addresses)

When we execute the above code, it produces the following result:

The First data frame

 city state zipcode

[1,] "Tampa" "FL" "33602"

[2,] "Seattle" "WA" "98104"

[3,] "Hartford" "CT" "6161"

[4,] "Denver" "CO" "80294"

The Second data frame

 city state zipcode

1 Lowry CO 80230

2 Charlotte FL 33949

The combined data frame

 city state zipcode

1 Tampa FL 33602

2 Seattle WA 98104

3 Hartford CT 6161

4 Denver CO 80294

5 Lowry CO 80230

6 Charlotte FL 33949

Merging Data Frames

We can merge two data frames by using the merge() function. The data frames must

have same column names on which the merging happens.

R Programming

84

In the example below, we consider the data sets about Diabetes in Pima Indian Women

available in the library names "MASS". we merge the two data sets based on the values

of blood pressure("bp") and body mass index("bmi"). On choosing these two columns for

merging, the records where values of these two variables match in both data sets are

combined together to form a single data frame.

library(MASS)

merged.Pima <- merge(x=Pima.te, y=Pima.tr,

 by.x=c("bp", "bmi"),

 by.y=c("bp", "bmi")

)

print(merged.Pima)

nrow(merged.Pima)

When we execute the above code, it produces the following result:

 bp bmi npreg.x glu.x skin.x ped.x age.x type.x npreg.y glu.y skin.y ped.y

1 60 33.8 1 117 23 0.466 27 No 2 125 20 0.088

2 64 29.7 2 75 24 0.370 33 No 2 100 23 0.368

3 64 31.2 5 189 33 0.583 29 Yes 3 158 13 0.295

4 64 33.2 4 117 27 0.230 24 No 1 96 27 0.289

5 66 38.1 3 115 39 0.150 28 No 1 114 36 0.289

6 68 38.5 2 100 25 0.324 26 No 7 129 49 0.439

7 70 27.4 1 116 28 0.204 21 No 0 124 20 0.254

8 70 33.1 4 91 32 0.446 22 No 9 123 44 0.374

9 70 35.4 9 124 33 0.282 34 No 6 134 23 0.542

10 72 25.6 1 157 21 0.123 24 No 4 99 17 0.294

11 72 37.7 5 95 33 0.370 27 No 6 103 32 0.324

12 74 25.9 9 134 33 0.460 81 No 8 126 38 0.162

13 74 25.9 1 95 21 0.673 36 No 8 126 38 0.162

14 78 27.6 5 88 30 0.258 37 No 6 125 31 0.565

15 78 27.6 10 122 31 0.512 45 No 6 125 31 0.565

16 78 39.4 2 112 50 0.175 24 No 4 112 40 0.236

17 88 34.5 1 117 24 0.403 40 Yes 4 127 11 0.598

 age.y type.y

1 31 No

2 21 No

3 24 No

4 21 No

5 21 No

R Programming

85

6 43 Yes

7 36 Yes

8 40 No

9 29 Yes

10 28 No

11 55 No

12 39 No

13 39 No

14 49 Yes

15 49 Yes

16 38 No

17 28 No

[1] 17

Melting and Casting

One of the most interesting aspects of R programming is about changing the shape of the

data in multiple steps to get a desired shape. The functions used to do this are

called melt() and cast().

We consider the dataset called ships present in the library called "MASS".

library(MASS)

print(ships)

When we execute the above code, it produces the following result:

 type year period service incidents

1 A 60 60 127 0

2 A 60 75 63 0

3 A 65 60 1095 3

4 A 65 75 1095 4

5 A 70 60 1512 6

.............

.............

8 A 75 75 2244 11

9 B 60 60 44882 39

10 B 60 75 17176 29

11 B 65 60 28609 58

............

............

R Programming

86

17 C 60 60 1179 1

18 C 60 75 552 1

19 C 65 60 781 0

............

............

Melt the Data

Now we melt the data to organize it, converting all columns other than type and year into

multiple rows.

molten.ships <- melt(ships, id = c("type","year"))

print(molten.ships)

When we execute the above code, it produces the following result:

 type year variable value

1 A 60 period 60

2 A 60 period 75

3 A 65 period 60

4 A 65 period 75

............

............

9 B 60 period 60

10 B 60 period 75

11 B 65 period 60

12 B 65 period 75

13 B 70 period 60

...........

...........

41 A 60 service 127

42 A 60 service 63

43 A 65 service 1095

...........

...........

70 D 70 service 1208

71 D 75 service 0

72 D 75 service 2051

73 E 60 service 45

R Programming

87

74 E 60 service 0

75 E 65 service 789

...........

...........

101 C 70 incidents 6

102 C 70 incidents 2

103 C 75 incidents 0

104 C 75 incidents 1

105 D 60 incidents 0

106 D 60 incidents 0

...........

...........

Cast the Molten Data

We can cast the molten data into a new form where the aggregate of each type of ship for

each year is created. It is done using the cast() function.

recasted.ship <- cast(molten.ships, type+year~variable,sum)

print(recasted.ship)

When we execute the above code, it produces the following result:

 type year period service incidents

1 A 60 135 190 0

2 A 65 135 2190 7

3 A 70 135 4865 24

4 A 75 135 2244 11

5 B 60 135 62058 68

6 B 65 135 48979 111

7 B 70 135 20163 56

8 B 75 135 7117 18

9 C 60 135 1731 2

10 C 65 135 1457 1

11 C 70 135 2731 8

12 C 75 135 274 1

13 D 60 135 356 0

14 D 65 135 480 0

15 D 70 135 1557 13

R Programming

88

16 D 75 135 2051 4

17 E 60 135 45 0

18 E 65 135 1226 14

19 E 70 135 3318 17

20 E 75 135 542 1

R Programming

89

In R, we can read data from files stored outside the R environment. We can also write data

into files which will be stored and accessed by the operating system. R can read and write

into various file formats like csv, excel, xml etc.

In this chapter we will learn to read data from a csv file and then write data into a csv file.

The file should be present in current working directory so that R can read it. Of course we

can also set our own directory and read files from there.

Getting and Setting the Working Directory

You can check which directory the R workspace is pointing to using the getwd() function.

You can also set a new working directory using setwd()function.

Get and print current working directory.

print(getwd())

Set current working directory.

setwd("/web/com")

Get and print current working directory.

print(getwd())

When we execute the above code, it produces the following result:

[1] "/web/com/1441086124_2016"

[1] "/web/com"

This result depends on your OS and your current directory where you are

working.

Input as CSV File

The csv file is a text file in which the values in the columns are separated by a comma.

Let's consider the following data present in the file named input.csv.

You can create this file using windows notepad by copying and pasting this data. Save the

file as input.csv using the save As All files(*.*) option in notepad.

id,name,salary,start_date,dept

1,Rick,623.3,2012-01-01,IT

2,Dan,515.2,2013-09-23,Operations

3,Michelle,611,2014-11-15,IT

19. R – CSV Files

R Programming

90

4,Ryan,729,2014-05-11,HR

,Gary,843.25,2015-03-27,Finance

6,Nina,578,2013-05-21,IT

7,Simon,632.8,2013-07-30,Operations

8,Guru,722.5,2014-06-17,Finance

Reading a CSV File

Following is a simple example of read.csv() function to read a CSV file available in your

current working directory:

data <- read.csv("input.csv")

print(data)

When we execute the above code, it produces the following result:

 id, name, salary, start_date, dept

1 1 Rick 623.30 2012-01-01 IT

2 2 Dan 515.20 2013-09-23 Operations

3 3 Michelle 611.00 2014-11-15 IT

4 4 Ryan 729.00 2014-05-11 HR

5 NA Gary 843.25 2015-03-27 Finance

6 6 Nina 578.00 2013-05-21 IT

7 7 Simon 632.80 2013-07-30 Operations

8 8 Guru 722.50 2014-06-17 Finance

Analyzing the CSV File

By default the read.csv() function gives the output as a data frame. This can be easily

checked as follows. Also we can check the number of columns and rows.

data <- read.csv("input.csv")

print(is.data.frame(data))

print(ncol(data))

print(nrow(data))

When we execute the above code, it produces the following result:

[1] TRUE

[1] 5

[1] 8

R Programming

91

Once we read data in a data frame, we can apply all the functions applicable to data frames

as explained in subsequent section.

Get the maximum salary:

Create a data frame.

data <- read.csv("input.csv")

Get the max salary from data frame.

sal <- max(data$salary)

print(sal)

When we execute the above code, it produces the following result:

[1] 843.25

Get the details of the person with max salary

We can fetch rows meeting specific filter criteria similar to a SQL where clause.

Create a data frame.

data <- read.csv("input.csv")

Get the max salary from data frame.

sal <- max(data$salary)

Get the person detail having max salary.

retval <- subset(data, salary == max(salary))

print(retval)

When we execute the above code, it produces the following result:

 id name salary start_date dept

5 NA Gary 843.25 2015-03-27 Finance

Get all the people working in IT department

Create a data frame.

data <- read.csv("input.csv")

retval <- subset(data, dept == "IT")

R Programming

92

print(retval)

When we execute the above code, it produces the following result:

 id name salary start_date dept

1 1 Rick 623.3 2012-01-01 IT

3 3 Michelle 611.0 2014-11-15 IT

6 6 Nina 578.0 2013-05-21 IT

Get the persons in IT department whose salary is greater than 600

Create a data frame.

data <- read.csv("input.csv")

info <- subset(data, salary > 600 & dept == "IT")

print(info)

When we execute the above code, it produces the following result:

 id name salary start_date dept

1 1 Rick 623.3 2012-01-01 IT

3 3 Michelle 611.0 2014-11-15 IT

Get the people who joined on or after 2014

Create a data frame.

data <- read.csv("input.csv")

retval <- subset(data, as.Date(start_date) > as.Date("2014-01-01"))

print(retval)

When we execute the above code, it produces the following result:

 id name salary start_date dept

3 3 Michelle 611.00 2014-11-15 IT

4 4 Ryan 729.00 2014-05-11 HR

5 NA Gary 843.25 2015-03-27 Finance

8 8 Guru 722.50 2014-06-17 Finance

R Programming

93

Writing into a CSV File

R can create csv file form existing data frame. The write.csv() function is used to create

the csv file. This file gets created in the working directory.

Create a data frame.

data <- read.csv("input.csv")

retval <- subset(data, as.Date(start_date) > as.Date("2014-01-01"))

Write filtered data into a new file.

write.csv(retval,"output.csv")

newdata <- read.csv("output.csv")

print(newdata)

When we execute the above code, it produces the following result:

 X id name salary start_date dept

1 3 3 Michelle 611.00 2014-11-15 IT

2 4 4 Ryan 729.00 2014-05-11 HR

3 5 NA Gary 843.25 2015-03-27 Finance

4 8 8 Guru 722.50 2014-06-17 Finance

Here the column X comes from the data set newper. This can be dropped using additional

parameters while writing the file.

Create a data frame.

data <- read.csv("input.csv")

retval <- subset(data, as.Date(start_date) > as.Date("2014-01-01"))

Write filtered data into a new file.

write.csv(retval,"output.csv", row.names=FALSE)

newdata <- read.csv("output.csv")

print(newdata)

When we execute the above code, it produces the following result:

 id name salary start_date dept

1 3 Michelle 611.00 2014-11-15 IT

2 4 Ryan 729.00 2014-05-11 HR

3 NA Gary 843.25 2015-03-27 Finance

4 8 Guru 722.50 2014-06-17 Finance

R Programming

94

Microsoft Excel is the most widely used spreadsheet program which stores data in the .xls

or .xlsx format. R can read directly from these files using some excel specific packages.

Few such packages are - XLConnect, xlsx, gdata etc. We will be using xlsx package. R can

also write into excel file using this package.

Install xlsx Package

You can use the following command in the R console to install the "xlsx" package. It may

ask to install some additional packages on which this package is dependent. Follow the

same command with required package name to install the additional packages.

install.packages("xlsx")

Verify and Load the "xlsx" Package

Use the following command to verify and load the "xlsx" package.

Verify the package is installed.

any(grepl("xlsx",installed.packages()))

Load the library into R workspace.

library("xlsx")

When the script is run we get the following output.

[1] TRUE

Loading required package: rJava

Loading required package: methods

Loading required package: xlsxjars

Input as xlsx File

Open Microsoft excel. Copy and paste the following data in the work sheet named as

sheet1.

id name salary start_date dept

1 Rick 623.3 1/1/2012 IT

2 Dan 515.2 9/23/2013 Operations

3 Michelle 611 11/15/2014 IT

20. R – Excel File

R Programming

95

4 Ryan 729 5/11/2014 HR

5 Gary 843.25 3/27/2015 Finance

6 Nina 578 5/21/2013 IT

7 Simon 632.8 7/30/2013 Operations

8 Guru 722.5 6/17/2014 Finance

Also copy and paste the following data to another worksheet and rename this worksheet

to "city".

name city

Rick Seattle

Dan Tampa

Michelle Chicago

Ryan Seattle

Gary Houston

Nina Boston

Simon Mumbai

Guru Dallas

Save the Excel file as "input.xlsx". You should save it in the current working directory of

the R workspace.

Reading the Excel File

The input.xlsx is read by using the read.xlsx() function as shown below. The result is

stored as a data frame in the R environment.

Read the first worksheet in the file input.xlsx.

data <- read.xlsx("input.xlsx", sheetIndex = 1)

print(data)

When we execute the above code, it produces the following result:

 id name salary start_date dept

1 1 Rick 623.30 2012-01-01 IT

2 2 Dan 515.20 2013-09-23 Operations

3 3 Michelle 611.00 2014-11-15 IT

4 4 Ryan 729.00 2014-05-11 HR

5 NA Gary 843.25 2015-03-27 Finance

6 6 Nina 578.00 2013-05-21 IT

7 7 Simon 632.80 2013-07-30 Operations

8 8 Guru 722.50 2014-06-17 Finance

R Programming

96

A binary file is a file that contains information stored only in form of bits and bytes.(0’s

and 1’s). They are not human readable as the bytes in it translate to characters and

symbols which contain many other non-printable characters. Attempting to read a binary

file using any text editor will show characters like Ø and ð.

The binary file has to be read by specific programs to be useable. For example, the binary

file of a Microsoft Word program can be read to a human readable form only by the Word

program. Which indicates that, besides the human readable text, there is a lot more

information like formatting of characters and page numbers etc., which are also stored

along with alphanumeric characters. And finally a binary file is a continuous sequence of

bytes. The line break we see in a text file is a character joining first line to the next.

Sometimes, the data generated by other programs are required to be processed by R as

a binary file. Also R is required to create binary files which can be shared with other

programs.

R has two functions WriteBin() and readBin() to create and read binary files.

Syntax

writeBin(object, con)

readBin(con, what, n)

Following is the description of the parameters used:

 con is the connection object to read or write the binary file.

 object is the binary file which to be written.

 what is the mode like character, integer etc. representing the bytes to be read.

 n is the number of bytes to read from the binary file.

Example

We consider the R inbuilt data "mtcars". First we create a csv file from it and convert it to

a binary file and store it as a OS file. Next we read this binary file created into R.

Writing the Binary File

We read the data frame "mtcars" as a csv file and then write it as a binary file to the OS.

Read the "mtcars" data frame as a csv file and store only the columns

"cyl","am" and "gear".

write.table(mtcars, file = "mtcars.csv",row.names=FALSE, na="",col.names=TRUE,

sep=",")

Store 5 records from the csv file as a new data frame.

21. R – Binary Files

R Programming

97

new.mtcars <- read.table("mtcars.csv",sep=",",header=TRUE,nrows = 5)

Create a connection object to write the binary file using mode "wb".

write.filename = file("/web/com/binmtcars.dat", "wb")

Write the column names of the data frame to the connection object.

writeBin(colnames(new.mtcars), write.filename)

Write the records in each of the column to the file.

writeBin(c(new.mtcars$cyl,new.mtcars$am,new.mtcars$gear), write.filename)

Close the file for writing so that it can be read by other program.

close(write.filename)

Reading the Binary File

The binary file created above stores all the data as continuous bytes. So we will read it by

choosing appropriate values of column names as well as the column values.

Create a connection object to read the file in binary mode using "rb".

read.filename <- file("/web/com/binmtcars.dat", "rb")

First read the column names. n=3 as we have 3 columns.

column.names <- readBin(read.filename, character(), n = 3)

Next read the column values. n=18 as we have 3 column names and 15 values.

read.filename <- file("/web/com/binmtcars.dat", "rb")

bindata <- readBin(read.filename, integer(), n = 18)

Print the data.

print(bindata)

Read the values from 4th byte to 8th byte which represents "cyl".

cyldata = bindata[4:8]

print(cyldata)

Read the values form 9th byte to 13th byte which represents "am".

amdata = bindata[9:13]

R Programming

98

print(amdata)

Read the values form 9th byte to 13th byte which represents "gear".

geardata = bindata[14:18]

print(geardata)

Combine all the read values to a dat frame.

finaldata = cbind(cyldata, amdata, geardata)

colnames(finaldata) = column.names

print(finaldata)

When we execute the above code, it produces the following result and chart:

 [1] 7108963 1728081249 7496037 6 6 4

 [7] 6 8 1 1 1 0

[13] 0 4 4 4 3 3

[1] 6 6 4 6 8

[1] 1 1 1 0 0

[1] 4 4 4 3 3

 cyl am gear

[1,] 6 1 4

[2,] 6 1 4

[3,] 4 1 4

[4,] 6 0 3

[5,] 8 0 3

As we can see, we got the original data back by reading the binary file in R.

R Programming

99

XML is a file format which shares both the file format and the data on the World Wide Web,

intranets, and elsewhere using standard ASCII text. It stands for Extensible Markup

Language (XML). Similar to HTML it contains markup tags. But unlike HTML where the

markup tag describes structure of the page, in xml the markup tags describe the meaning

of the data contained into he file.

You can read a xml file in R using the "XML" package. This package can be installed using

following command.

install.packages("XML")

Input Data

Create a XMl file by copying the below data into a text editor like notepad. Save the file

with a .xml extension and choosing the file type as all files(*.*).

 <RECORDS>

 <EMPLOYEE>

 <ID>1</ID>

 <NAME>Rick</NAME>

 <SALARY>623.3</SALARY>

 <STARTDATE>1/1/2012</STARTDATE>

 <DEPT>IT</DEPT>

 </EMPLOYEE>

 <EMPLOYEE>

 <ID>2</ID>

 <NAME>Dan</NAME>

 <SALARY>515.2</SALARY>

 <STARTDATE>9/23/2013</STARTDATE>

 <DEPT>Operations</DEPT>

 </EMPLOYEE>

 <EMPLOYEE>

 <ID>3</ID>

 <NAME>Michelle</NAME>

 <SALARY>611</SALARY>

 <STARTDATE>11/15/2014</STARTDATE>

 <DEPT>IT</DEPT>

 </EMPLOYEE>

22. R – XML Files

R Programming

100

 <EMPLOYEE>

 <ID>4</ID>

 <NAME>Ryan</NAME>

 <SALARY>729</SALARY>

 <STARTDATE>5/11/2014</STARTDATE>

 <DEPT>HR</DEPT>

 </EMPLOYEE>

 <EMPLOYEE>

 <ID>5</ID>

 <NAME>Gary</NAME>

 <SALARY>843.25</SALARY>

 <STARTDATE>3/27/2015</STARTDATE>

 <DEPT>Finance</DEPT>

 </EMPLOYEE>

 <EMPLOYEE>

 <ID>6</ID>

 <NAME>Nina</NAME>

 <SALARY>578</SALARY>

 <STARTDATE>5/21/2013</STARTDATE>

 <DEPT>IT</DEPT>

 </EMPLOYEE>

 <EMPLOYEE>

 <ID>7</ID>

 <NAME>Simon</NAME>

 <SALARY>632.8</SALARY>

 <STARTDATE>7/30/2013</STARTDATE>

 <DEPT>Operations</DEPT>

 </EMPLOYEE>

 <EMPLOYEE>

 <ID>8</ID>

 <NAME>Guru</NAME>

 <SALARY>722.5</SALARY>

 <STARTDATE>6/17/2014</STARTDATE>

 <DEPT>Finance</DEPT>

 </EMPLOYEE>

</RECORDS>

R Programming

101

Reading XML File

The xml file is read by R using the function xmlParse(). It is stored as a list in R.

Load the package required to read XML files.

library("XML")

Also load the other required package.

library("methods")

Give the input file name to the function.

result <- xmlParse(file="input.xml")

Print the result.

print(result)

When we execute the above code, it produces the following result:

1

 Rick

 623.3

 1/1/2012

 IT

 2

 Dan

 515.2

 9/23/2013

 Operations

 3

 Michelle

 611

 11/15/2014

 IT

R Programming

102

 4

 Ryan

 729

 5/11/2014

 HR

 5

 Gary

 843.25

 3/27/2015

 Finance

 6

 Nina

 578

 5/21/2013

 IT

 7

 Simon

 632.8

 7/30/2013

 Operations

 8

 Guru

 722.5

 6/17/2014

 Finance

Get Number of Nodes Present in XML File

Load the packages required to read XML files.

R Programming

103

library("XML")

library("methods")

Give the input file name to the function.

result <- xmlParse(file="input.xml")

Exract the root node form the xml file.

rootnode <- xmlRoot(result)

Find number of nodes in the root.

rootsize <- xmlSize(rootnode)

Print the result.

print(rootsize)

When we execute the above code, it produces the following result:

output

[1] 8

Details of the First Node

Let's look at the first record of the parsed file. It will give us an idea of the various elements

present in the top level node.

Load the packages required to read XML files.

library("XML")

library("methods")

Give the input file name to the function.

result <- xmlParse(file="input.xml")

Exract the root node form the xml file.

rootnode <- xmlRoot(result)

Print the result.

print(rootnode[1])

When we execute the above code, it produces the following result:

R Programming

104

$EMPLOYEE

 1

 Rick

 623.3

 1/1/2012

 IT

attr(,"class")

[1] "XMLInternalNodeList" "XMLNodeList"

Get Different Elements of a Node

Load the packages required to read XML files.

library("XML")

library("methods")

Give the input file name to the function.

result <- xmlParse(file="input.xml")

Exract the root node form the xml file.

rootnode <- xmlRoot(result)

Get the first element of the first node.

print(rootnode[[1]][[1]])

Get the fifth element of the first node.

print(rootnode[[1]][[5]])

Get the second element of the third node.

print(rootnode[[3]][[2]])

When we execute the above code, it produces the following result:

1

IT

Michelle

R Programming

105

XML to Data Frame

To handle the data effectively in large files we read the data in the xml file as a data frame.

Then process the data frame for data analysis.

Load the packages required to read XML files.

library("XML")

library("methods")

Convert the input xml file to a data frame.

xmldataframe <- xmlToDataFrame("input.xml")

print(xmldataframe)

When we execute the above code, it produces the following result:

 ID NAME SALARY STARTDATE DEPT

1 1 Rick 623.3 1/1/2012 IT

2 2 Dan 515.2 9/23/2013 Operations

3 3 Michelle 611 11/15/2014 IT

4 4 Ryan 729 5/11/2014 HR

5 5 Gary 843.25 3/27/2015 Finance

6 6 Nina 578 5/21/2013 IT

7 7 Simon 632.8 7/30/2013 Operations

8 8 Guru 722.5 6/17/2014 Finance

As the data is now available as a dataframe we can use data frame related function to

read and manipulate the file.

R Programming

106

JSON file stores data as text in human-readable format. Json stands for JavaScript Object

Notation. R can read JSON files using the rjson package.

Install rjson Package

In the R console, you can issue the following command to install the rjson package.

install.packages("rjson")

Input Data

Create a JSON file by copying the below data into a text editor like notepad. Save the file

with a .json extension and choosing the file type as all files(*.*).

{

"ID":["1","2","3","4","5","6","7","8"],

"Name":["Rick","Dan","Michelle","Ryan","Gary","Nina","Simon","Guru"],

"Salary":["623.3","515.2","611","729","843.25","578","632.8","722.5"],

"StartDate":["1/1/2012","9/23/2013","11/15/2014","5/11/2014","3/27/2015","5/21

/2013","7/30/2013","6/17/2014"],

"Dept":["IT","Operations","IT","HR","Finance","IT","Operations","Finance"]

}

Read the JSON File

The JSON file is read by R using the function from JSON(). It is stored as a list in R.

Load the package required to read JSON files.

library("rjson")

Give the input file name to the function.

result <- fromJSON(file="input.json")

Print the result.

print(result)

23. R – JSON File

R Programming

107

When we execute the above code, it produces the following result:

$ID

[1] "1" "2" "3" "4" "5" "6" "7" "8"

$Name

[1] "Rick" "Dan" "Michelle" "Ryan" "Gary" "Nina" "Simon"

"Guru"

$Salary

[1] "623.3" "515.2" "611" "729" "843.25" "578" "632.8" "722.5"

$StartDate

[1] "1/1/2012" "9/23/2013" "11/15/2014" "5/11/2014" "3/27/2015"

"5/21/2013" "7/30/2013" "6/17/2014"

$Dept

[1] "IT" "Operations" "IT" "HR" "Finance" "IT"

"Operations" "Finance"

Convert JSON to a Data Frame

We can convert the extracted data above to a R data frame for further analysis using

the as.data.frame() function.

Load the package required to read JSON files.

library("rjson")

Give the input file name to the function.

result <- fromJSON(file="input.json")

Convert JSON file to a data frame.

json_data_frame <- as.data.frame(result)

print(json_data_frame)

When we execute the above code, it produces the following result:

 ID Name Salary StartDate Dept

1 1 Rick 623.3 1/1/2012 IT

2 2 Dan 515.2 9/23/2013 Operations

R Programming

108

3 3 Michelle 611 11/15/2014 IT

4 4 Ryan 729 5/11/2014 HR

5 5 Gary 843.25 3/27/2015 Finance

6 6 Nina 578 5/21/2013 IT

7 7 Simon 632.8 7/30/2013 Operations

8 8 Guru 722.5 6/17/2014 Finance

R Programming

109

Many websites provide data for consumption by its users. For example the World Health

Organization(WHO) provides reports on health and medical information in the form of CSV,

txt and XML files. Using R programs, we can programmatically extract specific data from

such websites. Some packages in R which are used to scrap data form the web are -

"RCurl",XML", and "stringr". They are used to connect to the URL’s, identify required links

for the files and download them to the local environment.

Install R Packages

The following packages are required for processing the URL’s and links to the files. If they

are not available in your R Environment, you can install them using following commands.

install.packages("RCurl")

install.packages("XML")

install.packages("stringr")

install.packages("pylr")

Input Data

We will visit the URL weather data and download the CSV files using R for the year 2015.

Example

We will use the function getHTMLLinks() to gather the URLs of the files. Then we will

use the function downlaod.file() to save the files to the local system. As we will be

applying the same code again and again for multiple files, we will create a function to be

called multiple times. The filenames are passed as parameters in form of a R list object to

this function.

Read the URL.

url <- "http://www.geos.ed.ac.uk/~weather/jcmb_ws/"

Gather the html links present in the webpage.

links <- getHTMLLinks(url)

Identify only the links which point to the JCMB 2015 files.

filenames <- links[str_detect(links, "JCMB_2015")]

Store the file names as a list.

filenames_list <- as.list(filenames)

24. R – Web Data

http://www.geos.ed.ac.uk/~weather/jcmb_ws/

R Programming

110

Create a function to download the files by passing the URL and filename list.

downloadcsv <- function (mainurl,filename){

 filedetails <- str_c(mainurl,filename)

 download.file(filedetails,filename)

 }

Now apply the l_ply function and save the files into the current R working

directory.

l_ply(filenames,downloadcsv,mainurl="http://www.geos.ed.ac.uk/~weather/jcmb_ws/

")

Verify the File Download

After running the above code, you can locate the following files in the current R working

directory.

"JCMB_2015.csv" "JCMB_2015_Apr.csv" "JCMB_2015_Feb.csv" "JCMB_2015_Jan.csv"

"JCMB_2015_Mar.csv"

R Programming

111

The data is Relational database systems are stored in a normalized format. So, to carry

out statistical computing we will need very advanced and complex Sql queries. But R can

connect easily to many relational databases like MySql, Oracle, Sql server etc. and fetch

records from them as a data frame. Once the data is available in the R environment, it

becomes a normal R data set and can be manipulated or analyzed using all the powerful

packages and functions.

In this tutorial we will be using MySql as our reference database for connecting to R.

RMySQL Package

R has a built-in package named "RMySQL" which provides native connectivity between

with MySql database. You can install this package in the R environment using the following

command.

install.packages("RMySQL")

Connecting R to MySql

Once the package is installed we create a connection object in R to connect to the

database. It takes the username, password, database name and host name as input.

Create a connection Object to MySQL database.

We will connect to the sampel database named "sakila" that comes with MySql

installation.

 mysqlconnection = dbConnect(MySQL(), user='root', password='',

dbname='sakila', host='localhost')

List the tables available in this database.

 dbListTables(mysqlconnection)

When we execute the above code, it produces the following result:

 [1] "actor" "actor_info"

 [3] "address" "category"

 [5] "city" "country"

 [7] "customer" "customer_list"

 [9] "film" "film_actor"

[11] "film_category" "film_list"

[13] "film_text" "inventory"

[15] "language" "nicer_but_slower_film_list"

25. R – Databases

R Programming

112

[17] "payment" "rental"

[19] "sales_by_film_category" "sales_by_store"

[21] "staff" "staff_list"

[23] "store"

Querying the Tables

We can query the database tables in MySql using the function dbSendQuery(). The query

gets executed in MySql and the result set is returned using the R fetch() function. Finally

it is stored as a data frame in R.

Query the "actor" tables to get all the rows.

result = dbSendQuery(mysqlconnection, "select * from actor")

Store the result in a R data frame object. n=5 is used to fetch first 5 rows.

data.frame = fetch(result, n=5)

print(data.fame)

When we execute the above code, it produces the following result:

 actor_id first_name last_name last_update

1 1 PENELOPE GUINESS 2006-02-15 04:34:33

2 2 NICK WAHLBERG 2006-02-15 04:34:33

3 3 ED CHASE 2006-02-15 04:34:33

4 4 JENNIFER DAVIS 2006-02-15 04:34:33

5 5 JOHNNY LOLLOBRIGIDA 2006-02-15 04:34:33

Query with Filter Clause

We can pass any valid select query to get the result.

result = dbSendQuery(mysqlconnection, "select * from actor where

last_name='TORN'")

Fetch all the records(with n = -1) and store it as a data frame.

data.frame = fetch(result, n=-1)

print(data)

When we execute the above code, it produces the following result:

 actor_id first_name last_name last_update

1 18 DAN TORN 2006-02-15 04:34:33

2 94 KENNETH TORN 2006-02-15 04:34:33

R Programming

113

3 102 WALTER TORN 2006-02-15 04:34:33

Updating Rows in the Tables

We can update the rows in a Mysql table by passing the update query to the

dbSendQuery() function.

dbSendQuery(mysqlconnection, "update mtcars set disp = 168.5 where hp = 110")

After executing the above code we can see the table updated in the MySql Environment.

Inserting Data into the Tables

dbSendQuery(mysqlconnection,

"insert into mtcars(row_names, mpg, cyl, disp, hp, drat, wt, qsec, vs, am,

gear, carb)

values('New Mazda RX4 Wag', 21, 6, 168.5, 110, 3.9, 2.875, 17.02, 0, 1, 4, 4)"

)

After executing the above code we can see the row inserted into the table in the MySql

Environment.

Creating Tables in MySql

We can create tables in the MySql using the function dbWriteTable(). It overwrites the

table if it already exists and takes a data frame as input.

Create the connection object to the database where we want to create the

table.

mysqlconnection = dbConnect(MySQL(), user='root', password='', dbname='sakila',

host='localhost')

Use the R data frame "mtcars" to create the table in MySql.

All the rows of mtcars are taken inot MySql.

dbWriteTable(mysqlconnection, "mtcars", mtcars[,], overwrite = TRUE)

After executing the above code we can see the table created in the MySql Environment.

Dropping Tables in MySql

We can drop the tables in MySql database passing the drop table statement into the

dbSendQuery() in the same way we used it for querying data from tables.

R Programming

114

dbSendQuery(mysqlconnection, 'drop table if exists mtcars')

After executing the above code we can see the table is dropped in the MySql Environment.

R Programming

115

R Programming language has numerous libraries to create charts and graphs. A pie-chart

is a representation of values as slices of a circle with different colors. The slices are labeled

and the numbers corresponding to each slice is also represented in the chart.

In R the pie chart is created using the pie() function which takes positive numbers as a

vector input. The additional parameters are used to control labels, color, title etc.

Syntax

The basic syntax for creating a pie-chart using the R is:

pie(x, labels, radius, main, col, clockwise)

Following is the description of the parameters used:

 x is a vector containing the numeric values used in the pie chart.

 labels is used to give description to the slices.

 radius indicates the radius of the circle of the pie chart.(value between -1 and +1).

 main indicates the title of the chart.

 col indicates the color palette.

 clockwise is a logical value indicating if the slices are drawn clockwise or anti

clockwise.

Example

A very simple pie-chart is created using just the input vector and labels. The below script

will create and save the pie chart in the current R working directory.

Create data for the graph.

x <- c(21, 62, 10, 53)

labels <- c("London", "New York", "Singapore", "Mumbai")

Give the chart file a name.

png(file = "city.jpg")

Plot the chart.

pie(x,labels)

Save the file.

dev.off()

26. R – Pie Charts

R Programming

116

When we execute the above code, it produces the following result:

Pie Chart Title and Colors

We can expand the features of the chart by adding more parameters to the function. We

will use parameter main to add a title to the chart and another parameter is col which

will make use of rainbow colour pallet while drawing the chart. The length of the pallet

should be same as the number of values we have for the chart. Hence we use length(x).

Example

The below script will create and save the pie chart in the current R working directory.

Create data for the graph.

x <- c(21, 62, 10, 53)

labels <- c("London", "New York", "Singapore", "Mumbai")

Give the chart file a name.

png(file = "city_title_colours.jpg")

Plot the chart with title and rainbow color pallet.

pie(x, labels, main="City pie chart", col=rainbow(length(x)))

Save the file.

R Programming

117

dev.off()

When we execute the above code, it produces the following result:

Slice Percentages and Chart Legend

We can add slice percentage and a chart legend by creating additional chart variables.

Create data for the graph.

x <- c(21, 62, 10,53)

labels <- c("London","New York","Singapore","Mumbai")

piepercent<- round(100*x/sum(x), 1)

Give the chart file a name.

png(file = "city_percentage_legends.jpg")

Plot the chart.

pie(x, labels=piepercent, main="City pie chart",col=rainbow(length(x)))

R Programming

118

legend("topright", c("London","New York","Singapore","Mumbai"), cex=0.8,

fill=rainbow(length(x)))

Save the file.

dev.off()

When we execute the above code, it produces the following result:

3D Pie Chart

A pie chart with 3 dimensions can be drawn using additional packages. The package

plotrix has a function called pie3D() that is used for this.

Get the library.

library(plotrix)

Create data for the graph.

x <- c(21, 62, 10,53)

lbl <- c("London","New York","Singapore","Mumbai")

Give the chart file a name.

R Programming

119

png(file = "3d_pie_chart.jpg")

Plot the chart.

pie3D(x,labels=lbl,explode=0.1,

 main="Pie Chart of Countries ")

Save the file.

dev.off()

When we execute the above code, it produces the following result:

R Programming

120

A bar chart represents data in rectangular bars with length of the bar proportional to the

value of the variable. R uses the function barplot() to create bar charts. R can draw both

vertical and horizontal bars in the bar chart. In bar chart each of the bars can be given

different colors.

Syntax

The basic syntax to create a bar-chart in R is:

barplot(H,xlab,ylab,main, names.arg,col)

Following is the description of the parameters used:

 H is a vector or matrix containing numeric values used in bar chart.

 xlab is the label for x axis.

 ylab is the label for y axis.

 main is the title of the bar chart.

 names.arg is a vector of names appearing under each bar.

 col is used to give colors to the bars in the graph.

Example

A simple bar chart is created using just the input vector and the name of each bar.

The below script will create and save the bar chart in the current R working directory.

Create the data for the chart.

H <- c(7,12,28,3,41)

Give the chart file a name.

png(file = "barchart.png")

Plot the bar chart.

barplot(H)

Save the file.

dev.off()

27. R – Bar Charts

R Programming

121

When we execute the above code, it produces the following result:

Bar Chart Labels, Title and Colors

The features of the bar chart can be expanded by adding more parameters.

The main parameter is used to add title. The col parameter is used to add colors to the

bars. The args.name is a vector having same number of values as the input vector to

describe the meaning of each bar.

Example

The following script will create and save the bar chart in the current R working directory.

Create the data for the chart.

H <- c(7,12,28,3,41)

M <- c("Mar","Apr","May","Jun","Jul")

Give the chart file a name.

png(file = "barchart_months_revenue.png")

R Programming

122

Plot the bar chart.

barplot(H,names.arg=M,xlab="Month",ylab="Revenue",col="blue",

main="Revenue chart",border="red")

Save the file.

dev.off()

When we execute the above code, it produces the following result:

Group Bar Chart and Stacked Bar Chart

We can create bar chart with groups of bars and stacks in each bar by using a matrix as

input values.

More than two variables are represented as a matrix which is used to create the group bar

chart and stacked bar chart.

Create the input vectors.

colors <- c("green","orange","brown")

months <- c("Mar","Apr","May","Jun","Jul")

regions <- c("East","West","North")

R Programming

123

Create the matrix of the values.

Values <- matrix(c(2,9,3,11,9,4,8,7,3,12,5,2,8,10,11),nrow=3,ncol=5,byrow=TRUE)

Give the chart file a name.

png(file = "barchart_stacked.png")

Create the bar chart.

barplot(Values,main="total

revenue",names.arg=months,xlab="month",ylab="revenue",col=colors)

Add the legend to the chart.

legend("topleft", regions, cex=1.3, fill=colors)

Save the file.

dev.off()

R Programming

124

Boxplots are a measure of how well distributed is the data in a data set. It divides the data

set into three quartiles. This graph represents the minimum, maximum, median, first

quartile and third quartile in the data set. It is also useful in comparing the distribution of

data across data sets by drawing boxplots for each of them.

Boxplots are created in R by using the boxplot() function.

Syntax

The basic syntax to create a boxplot in R is :

boxplot(x,data,notch,varwidth,names,main)

Following is the description of the parameters used:

 x is a vector or a formula.

 data is the data frame.

 notch is a logical value. Set as TRUE to draw a notch.

 varwidth is a logical value. Set as true to draw width of the box proportionate to

the sample size.

 names are the group labels which will be printed under each boxplot.

 main is used to give a title to the graph.

Example

We use the data set "mtcars" available in the R environment to create a basic boxplot.

Let's look at the columns "mpg" and "cyl" in mtcars.

input <- mtcars[,c('mpg','cyl')]

print(head(input))

When we execute above code, it produces following result:

 mpg cyl

Mazda RX4 21.0 6

Mazda RX4 Wag 21.0 6

Datsun 710 22.8 4

Hornet 4 Drive 21.4 6

Hornet Sportabout 18.7 8

Valiant 18.1 6

28. R – Boxplots

R Programming

125

Creating the Boxplot

The below script will create a boxplot graph for the relation between mpg(miles per gallon)

and cyl (number of cylinders).

Give the chart file a name.

png(file = "boxplot.png")

Plot the chart.

boxplot(mpg ~ cyl, data=mtcars,

 xlab="Number of Cylinders",

 ylab="Miles Per Gallon",

 main="Mileage Data")

Save the file.

dev.off()

When we execute the above code, it produces the following result:

R Programming

126

Boxplot with Notch

We can draw boxplot with notch to find out how the medians of different data groups

match with each other.

The below script will create a boxplot graph with notch for each of the data group.

Give the chart file a name.

png(file = "boxplot_with_notch.png")

Plot the chart.

boxplot(mpg ~ cyl, data=mtcars,

 xlab="Number of Cylinders",

 ylab="Miles Per Gallon",

 main="Mileage Data",

 notch=TRUE,

 varwidth=TRUE,

 col=c("green","yellow","purple"),

 names=c("High","Medium","Low"))

Save the file.

dev.off()

When we execute the above code, it produces the following result:

R Programming

127

A histogram represents the frequencies of values of a variable bucketed into ranges.

Histogram is similar to bar chat but the difference is it groups the values into continuous

ranges. Each bar in histogram represents the height of the number of values present in

that range.

R creates histogram using hist() function. This function takes a vector as an input and

uses some more parameters to plot histograms.

Syntax

The basic syntax for creating a histogram using R is:

hist(v,main,xlab,xlim,ylim,breaks,col,border)

Following is the description of the parameters used:

 v is a vector containing numeric values used in histogram.

 main indicates title of the chart.

 col is used to set color of the bars.

 border is used to set border color of each bar.

 xlab is used to give description of x-axis.

 xlim is used to specify the range of values on the x-axis.

 ylim is used to specify the range of values on the y-axis.

 breaks is used to mention the width of each bar.

Example

A simple histogram is created using input vector, label, col and border parameters.

The script given below will create and save the histogram in the current R working

directory.

Create data for the graph.

v <- c(9,13,21,8,36,22,12,41,31,33,19)

Give the chart file a name.

png(file = "histogram.png")

Create the histogram.

hist(v,xlab="Weight",col="yellow",border="blue")

29. R – Histograms

R Programming

128

Save the file.

dev.off()

When we execute the above code, it produces the following result:

Range of X and Y values

To specify the range of values allowed in X axis and Y axis, we can use the xlim and ylim

parameters.

The width of each of the bar can be decided by using breaks.

Create data for the graph.

v <- c(9,13,21,8,36,22,12,41,31,33,19)

Give the chart file a name.

png(file = "histogram_lim_breaks.png")

Create the histogram.

hist(v,xlab="Weight",col="green",border="red",xlim = c(0,40), ylim = c(0,5),

breaks = 5)

R Programming

129

Save the file.

dev.off()

When we execute the above code, it produces the following result:

R Programming

130

A line chart is a graph that connects a series of points by drawing line segments between

them. These points are ordered in one of their coordinate (usually the x-coordinate) value.

Line charts are usually used in identifying the trends in data.

The plot() function in R is used to create the line graph.

Syntax

The basic syntax to create a line chart in R is:

plot(v,type,col,xlab,ylab)

Following is the description of the parameters used:

 v is a vector containing the numeric values.

 type takes the value "p" to draw only the points, "i" to draw only the lines and "o"

to draw both points and lines.

 xlab is the label for x axis.

 ylab is the label for y axis.

 main is the Title of the chart.

 col is used to give colors to both the points and lines.

Example

A simple line chart is created using the input vector and the type parameter as "O". The

below script will create and save a line chart in the current R working directory.

Create the data for the chart.

v <- c(7,12,28,3,41)

Give the chart file a name.

png(file = "line_chart.jpg")

Plot the bar chart.

plot(v,type="o")

Save the file.

dev.off()

30. R – Line Graphs

R Programming

131

When we execute the above code, it produces the following result:

Line Chart Title, Color and Labels

The features of the line chart can be expanded by using additional parameters. We add

color to the points and lines, give a title to the chart and add labels to the axes.

Example

Create the data for the chart.

v <- c(7,12,28,3,41)

Give the chart file a name.

png(file = "line_chart_label_colored.jpg")

Plot the bar chart.

plot(v,type="o",col="red",xlab="Month",ylab="Rain fall",main="Rain fall chart")

Save the file.

dev.off()

R Programming

132

When we execute the above code, it produces the following result:

Multiple Lines in a Line Chart

More than one line can be drawn on the same chart by using the lines()function.

After the first line is plotted, the lines() function can use an additional vector as input to

draw the second line in the chart,

Create the data for the chart.

v <- c(7,12,28,3,41)

t <- c(14,7,6,19,3)

Give the chart file a name.

png(file = "line_chart_2_lines.jpg")

Plot the bar chart.

plot(v,type="o",col="red",xlab="Month",ylab="Rain fall",main="Rain fall chart")

lines(t, type="o", col="blue")

R Programming

133

Save the file.

dev.off()

When we execute the above code, it produces the following result:

R Programming

134

Scatterplots show many points plotted in the Cartesian plane. Each point represents the

values of two variables. One variable is chosen in the horizontal axis and another in the

vertical axis.

The simple scatterplot is created using the plot() function.

Syntax

The basic syntax for creating scatterplot in R is :

plot(x, y, main, xlab, ylab, xlim, ylim, axes)

Following is the description of the parameters used:

 x is the data set whose values are the horizontal coordinates.

 y is the data set whose values are the vertical coordinates.

 main is the tile of the graph.

 xlab is the label in the horizontal axis.

 ylab is the label in the vertical axis.

 xlim is the limits of the values of x used for plotting.

 ylim is the limits of the values of y used for plotting.

 axes indicates whether both axes should be drawn on the plot.

Example

We use the data set "mtcars" available in the R environment to create a basic scatterplot.

Let's use the columns "wt" and "mpg" in mtcars.

input <- mtcars[,c('wt','mpg')]

print(head(input))

When we execute the above code, it produces the following result:

 wt mpg

Mazda RX4 2.620 21.0

Mazda RX4 Wag 2.875 21.0

Datsun 710 2.320 22.8

Hornet 4 Drive 3.215 21.4

Hornet Sportabout 3.440 18.7

Valiant 3.460 18.1

31. R – Scatterplots

R Programming

135

Creating the Scatterplot

The below script will create a scatterplot graph for the relation between wt(weight) and

mpg(miles per gallon).

Get the input values.

input <- mtcars[,c('wt','mpg')]

Give the chart file a name.

png(file = "scatterplot.png")

Plot the chart for cars with weight between 2.5 to 5 and mileage between 15

and 30.

plot(x=input$wt,y=input$mpg,

 xlab="Weight",

 ylab="Milage",

 xlim=c(2.5,5),

 ylim=c(15,30),

 main="Weight vs Milage"

)

Save the file.

dev.off()

R Programming

136

When we execute the above code, it produces the following result:

Scatterplot Matrices

When we have more than two variables and we want to find the correlation between one

variable versus the remaining ones we use scatterplot matrix. We use pairs() function to

create matrices of scatterplots.

Syntax

The basic syntax for creating scatterplot matrices in R is :

pairs(formula, data)

Following is the description of the parameters used:

 formula represents the series of variables used in pairs.

 data represents the data set from which the variables will be taken.

Example

Each variable is paired up with each of the remaining variable. A scatterplot is plotted for

each pair.

R Programming

137

Give the chart file a name.

png(file = "scatterplot_matrices.png")

Plot the matrices between 4 variables giving 12 plots.

One variable with 3 others and total 4 variables.

pairs(~wt+mpg+disp+cyl,data=mtcars,

 main="Scatterplot Matrix")

Save the file.

dev.off()

When the above code is executed we get the following output.

R Programming

138

Statistical analysis in R is performed by using many in-built functions. Most of these

functions are part of the R base package. These functions take R vector as an input along

with the arguments and give the result.

The functions we are discussing in this chapter are mean, median and mode.

Mean

It is calculated by taking the sum of the values and dividing with the number of values in

a data series.

The function mean() is used to calculate this in R.

Syntax

The basic syntax for calculating mean in R is:

mean(x, trim = 0, na.rm = FALSE, ...)

Following is the description of the parameters used:

 x is the input vector.

 trim is used to drop some observations from both end of the sorted vector.

 na.rm is used to remove the missing values from the input vector.

Example

Create a vector.

x <- c(12,7,3,4.2,18,2,54,-21,8,-5)

Find Mean.

result.mean <- mean(x)

print(result.mean)

When we execute the above code, it produces the following result:

[1] 8.22

32. R – Mean, Median & Mode

R Programming

139

Applying Trim Option

When trim parameter is supplied, the values in the vector get sorted and then the required

numbers of observations are dropped from calculating the mean.

When trim =0.3, 3 values from each end will be dropped from the calculations to find

mean.

In this case the sorted vector is (-21, -5, 2, 3, 4.2, 7, 8, 12, 18, 54) and the values

removed from the vector for calculating mean are (-21,-5,2) from left and (12,18,54) from

right.

Create a vector.

x <- c(12,7,3,4.2,18,2,54,-21,8,-5)

Find Mean.

result.mean <- mean(x,trim=0.3)

print(result.mean)

When we execute the above code, it produces the following result:

[1] 5.55

Applying NA Option

If there are missing values, then the mean function returns NA.

To drop the missing values from the calculation use na.rm=TRUE. which means remove

the NA values.

Create a vector.

 x <- c(12,7,3,4.2,18,2,54,-21,8,-5,NA)

Find mean.

result.mean <- mean(x)

print(result.mean)

Find mean dropping NA values.

result.mean <- mean(x,na.rm=TRUE)

print(result.mean)

When we execute the above code, it produces the following result:

[1] NA

[1] 8.22

R Programming

140

Median

The middle most value in a data series is called the median. The median()function is used

in R to calculate this value.

Syntax

The basic syntax for calculating median in R is:

median(x, na.rm = FALSE)

Following is the description of the parameters used:

 x is the input vector.

 na.rm is used to remove the missing values from the input vector.

Example

Create the vector.

x <- c(12,7,3,4.2,18,2,54,-21,8,-5)

Find the median.

median.result <- median(x)

print(median.result)

When we execute the above code, it produces the following result:

[1] 5.6

Mode

The mode is the value that has highest number of occurrences in a set of data. Unike mean

and median, mode can have both numeric and character data.

R does not have a standard in-built function to calculate mode. So we create a user

function to calculate mode of a data set in R. This function takes the vector as input and

gives the mode value as output.

Example

Create the function.

getmode <- function(v) {

 uniqv <- unique(v)

 uniqv[which.max(tabulate(match(v, uniqv)))]

}

Create the vector with numbers.

R Programming

141

v <- c(2,1,2,3,1,2,3,4,1,5,5,3,2,3)

Calculate the mode using the user function.

result <- getmode(v)

print(result)

Create the vector with characters.

charv <- c("o","it","the","it","it")

Calculate the mode using the user function.

result <- getmode(charv)

print(result)

When we execute the above code, it produces the following result:

[1] 2

[1] "it"

R Programming

142

Regression analysis is a very widely used statistical tool to establish a relationship model

between two variables. One of these variable is called predictor variable whose value is

gathered through experiments. The other variable is called response variable whose value

is derived from the predictor variable.

In Linear Regression these two variables are related through an equation, where exponent

(power) of both these variables is 1. Mathematically a linear relationship represents a

straight line when plotted as a graph. A non-linear relationship where the exponent of any

variable is not equal to 1 creates a curve.

The general mathematical equation for a linear regression is:

y = ax+b

Following is the description of the parameters used:

 y is the response variable.

 x is the predictor variable.

 a and b are constants which are called the coefficients.

Steps to Establish a Regression

A simple example of regression is predicting weight of a person when his height is known.

To do this we need to have the relationship between height and weight of a person.

The steps to create the relationship is:

 Carry out the experiment of gathering a sample of observed values of height and

corresponding weight.

 Create a relationship model using the lm() functions in R.

 Find the coefficients from the model created and create the mathematical equation

using these.

 Get a summary of the relationship model to know the average error in prediction.

Also called residuals.

 To predict the weight of new persons, use the predict() function in R.

Input Data

Below is the sample data representing the observations:

Values of height

151, 174, 138, 186, 128, 136, 179, 163, 152, 131

33. R – Linear Regression

R Programming

143

Values of weight.

63, 81, 56, 91, 47, 57, 76, 72, 62, 48

lm() Function

This function creates the relationship model between the predictor and the response

variable.

Syntax

The basic syntax for lm() function in linear regression is:

lm(formula,data)

Following is the description of the parameters used:

 formula is a symbol presenting the relation between x and y.

 data is the vector on which the formula will be applied.

Create Relationship Model & get the Coefficients

x <- c(151, 174, 138, 186, 128, 136, 179, 163, 152, 131)

y <- c(63, 81, 56, 91, 47, 57, 76, 72, 62, 48)

Apply the lm() function.

relation <- lm(y~x)

print(relation)

When we execute the above code, it produces the following result:

Call:

lm(formula = y ~ x)

Coefficients:

(Intercept) x

 -38.4551 0.6746

Get the Summary of the Relationship

x <- c(151, 174, 138, 186, 128, 136, 179, 163, 152, 131)

y <- c(63, 81, 56, 91, 47, 57, 76, 72, 62, 48)

R Programming

144

Apply the lm() function.

relation <- lm(y~x)

print(summary(relation))

When we execute the above code, it produces the following result:

Call:

lm(formula = y ~ x)

Residuals:

 Min 1Q Median 3Q Max

-6.3002 -1.6629 0.0412 1.8944 3.9775

Coefficients:

 Estimate Std. Error t value Pr(>|t|)

(Intercept) -38.45509 8.04901 -4.778 0.00139 **

x 0.67461 0.05191 12.997 1.16e-06 ***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 3.253 on 8 degrees of freedom

Multiple R-squared: 0.9548, Adjusted R-squared: 0.9491

F-statistic: 168.9 on 1 and 8 DF, p-value: 1.164e-06

predict() Function

Syntax

The basic syntax for predict() in linear regression is:

predict(object, newdata)

Following is the description of the parameters used:

 object is the formula which is already created using the lm() function.

 newdata is the vector containing the new value for predictor variable.

Predict the weight of new persons

The predictor vector.

R Programming

145

x <- c(151, 174, 138, 186, 128, 136, 179, 163, 152, 131)

The resposne vector.

y <- c(63, 81, 56, 91, 47, 57, 76, 72, 62, 48)

Apply the lm() function.

relation <- lm(y~x)

Find weight of a person with height 170.

a <- data.frame(x=170)

result <- predict(relation,a)

print(result)

When we execute the above code, it produces the following result:

 1

76.22869

Visualize the Regression Graphically

Create the predictor and response variable.

x <- c(151, 174, 138, 186, 128, 136, 179, 163, 152, 131)

y <- c(63, 81, 56, 91, 47, 57, 76, 72, 62, 48)

relation <- lm(y~x)

Give the chart file a name.

png(file = "linearregression.png")

Plot the chart.

plot(y,x,col="blue",main="Height & Weight Regression",

abline(lm(x~y)),cex = 1.3,pch=16,xlab="Weight in Kg",ylab="Height in cm")

Save the file.

dev.off()

When we execute the above code, it produces the following result:

R Programming

146

R Programming

147

Multiple regression is an extension of linear regression into relationship between more

than two variables. In simple linear relation we have one predictor and one response

variable, but in multiple regression we have more than one predictor variable and one

response variable.

The general mathematical equation for multiple regression is:

y= a + b1x1 + b2x2 +...bnxn

Following is the description of the parameters used:

 y is the response variable.

 a, b1, b2...bn are the coefficients.

 x1, x2, ...xn are the predictor variables.

We create the regression model using the lm() function in R. The model determines the

value of the coefficients using the input data. Next we can predict the value of the response

variable for a given set of predictor variables using these coefficients.

lm() Function

This function creates the relationship model between the predictor and the response

variable.

Syntax

The basic syntax for lm() function in multiple regression is:

lm(y ~ x1+x2+x3...,data)

Following is the description of the parameters used:

 formula is a symbol presenting the relation between the response variable and

predictor variables.

 data is the vector on which the formula will be applied.

Example

Input Data

Consider the data set "mtcars" available in the R environment. It gives a comparison

between different car models in terms of mileage per gallon (mpg), cylinder

displacement("disp"), horse power("hp"), weight of the car("wt") and some more

parameters.

34. R – Multiple Regression

R Programming

148

The goal of the model is to establish the relationship between "mpg" as a response variable

with "disp","hp" and "wt" as predictor variables. We create a subset of these variables

from the mtcars data set for this purpose.

input <- mtcars[,c("mpg","disp","hp","wt")]

print(head(input))

When we execute the above code, it produces the following result:

 mpg disp hp wt

Mazda RX4 21.0 160 110 2.620

Mazda RX4 Wag 21.0 160 110 2.875

Datsun 710 22.8 108 93 2.320

Hornet 4 Drive 21.4 258 110 3.215

Hornet Sportabout 18.7 360 175 3.440

Valiant 18.1 225 105 3.460

Create Relationship Model & get the Coefficients

input <- mtcars[,c("mpg","disp","hp","wt")]

Create the relationship model.

model <- lm(mpg~disp+hp+wt, data=input)

Show the model.

print(model)

Get the Intercept and coefficients as vector elements.

cat("# # # # The Coefficient Values # # # ","\n")

a <- coef(model)[1]

print(a)

Xdisp <- coef(model)[2]

Xhp <- coef(model)[3]

Xwt <- coef(model)[4]

print(Xdisp)

print(Xhp)

print(Xwt)

R Programming

149

When we execute the above code, it produces the following result:

Call:

lm(formula = mpg ~ disp + hp + wt, data = input)

Coefficients:

(Intercept) disp hp wt

 37.105505 -0.000937 -0.031157 -3.800891

The Coefficient Values # # #

(Intercept)

 37.10551

 disp

-0.0009370091

 hp

-0.03115655

 wt

-3.800891

Create Equation for Regression Model

Based on the above intercept and coefficient values, we create the mathematical equation.

Y = a+Xdisp.x1+Xhp.x2+Xwt.x3

or

Y = 37.15+(-0.000937)*x1+(-0.0311)*x2+(-3.8008)*x3

Apply Equation for predicting New Values

We can use the regression equation created above to predict the mileage when a new set

of values for displacement, horse power and weight is provided.

For a car with disp = 221, hp = 102 and wt = 2.91 the predicted mileage is:

Y = 37.15+(-0.000937)*221+(-0.0311)*102+(-3.8008)*2.91 = 22.7104

R Programming

150

The Logistic Regression is a regression model in which the response variable (dependent

variable) has categorical values such as True/False or 0/1. It actually measures the

probability of a binary response as the value of response variable based on the

mathematical equation relating it with the predictor variables.

The general mathematical equation for logistic regression is:

y = 1/(1+e^-(a+b1x1+b2x2+b3x3+...))

Following is the description of the parameters used:

 y is the response variable.

 x is the predictor variable.

 a and b are the coefficients which are numeric constants.

The function used to create the regression model is the glm() function.

Syntax

The basic syntax for glm() function in logistic regression is:

glm(formula,data,family)

Following is the description of the parameters used:

 formula is the symbol presenting the relationship between the variables.

 data is the data set giving the values of these variables .

 family is R object to specify the details of the model. It's value is binomial for logistic

regression.

Example

The in-built data set "mtcars" describes different models of a car with their various engine

specifications. In "mtcars" data set, the transmission mode (automatic or manual) is

described by the column am which is a binary value (0 or 1). We can create a logistic

regression model between the columns "am" and 3 other columns - hp, wt and cyl.

Select some columns form mtcars.

input <- mtcars[,c("am","cyl","hp","wt")]

print(head(input))

When we execute the above code, it produces the following result:

 am cyl hp wt

Mazda RX4 1 6 110 2.620

35. R – Logistic Regression

R Programming

151

Mazda RX4 Wag 1 6 110 2.875

Datsun 710 1 4 93 2.320

Hornet 4 Drive 0 6 110 3.215

Hornet Sportabout 0 8 175 3.440

Valiant 0 6 105 3.460

Create Regression Model

We use the glm() function to create the regression model and get its summary for

analysis.

input <- mtcars[,c("am","cyl","hp","wt")]

am.data = glm(formula=am ~ cyl + hp + wt ,

 data=input,

 family=binomial)

print(summary(am.data))

When we execute the above code, it produces the following result:

Call:

glm(formula = am ~ cyl + hp + wt, family = binomial, data = input)

Deviance Residuals:

 Min 1Q Median 3Q Max

-2.17272 -0.14907 -0.01464 0.14116 1.27641

Coefficients:

 Estimate Std. Error z value Pr(>|z|)

(Intercept) 19.70288 8.11637 2.428 0.0152 *

cyl 0.48760 1.07162 0.455 0.6491

hp 0.03259 0.01886 1.728 0.0840 .

wt -9.14947 4.15332 -2.203 0.0276 *

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for binomial family taken to be 1)

R Programming

152

 Null deviance: 43.2297 on 31 degrees of freedom

Residual deviance: 9.8415 on 28 degrees of freedom

AIC: 17.841

Number of Fisher Scoring iterations: 8

Conclusion

In the summary as the p-value in the last column is more than 0.05 for the variables "cyl"

and "hp", we consider them to be insignificant in contributing to the value of the variable

"am". Only weight (wt) impacts the "am" value in this regression model.

R Programming

153

In a random collection of data from independent sources, it is generally observed that the

distribution of data is normal. Which means, on plotting a graph with the value of the

variable in the horizontal axis and the count of the values in the vertical axis we get a bell

shape curve. The center of the curve represents the mean of the data set. In the graph,

fifty percent of values lie to the left of the mean and the other fifty percent lie to the right

of the graph. This is referred as normal distribution in statistics.

R has four in built functions to generate normal distribution. They are described below.

dnorm(x, mean, sd)

pnorm(x, mean, sd)

qnorm(p, mean, sd)

rnorm(n, mean, sd)

Following is the description of the parameters used in above functions:

 x is a vector of numbers.

 p is a vector of probabilities.

 n is number of observations(sample size).

 mean is the mean value of the sample data. It's default value is zero.

 sd is the standard deviation. It's default value is 1.

dnorm()

This function gives height of the probability distribution at each point for a given mean

and standard deviation.

Create a sequence of numbers between -10 and 10 incrementing by 0.1.

x <- seq(-10,10,by=.1)

Choose the mean as 2.5 and standard deviation as 0.5.

y <- dnorm(x, mean= 2.5, sd = 0.5)

Give the chart file a name.

png(file = "dnorm.png")

plot(x,y)

Save the file.

36. R – Normal Distribution

R Programming

154

dev.off()

When we execute the above code, it produces the following result:

pnorm()

This function gives the probability of a normally distributed random number to be less that

the value of a given number. It is also called "Cumulative Distribution Function".

Create a sequence of numbers between -10 and 10 incrementing by 0.2.

 x <- seq(-10,10,by=.2)

Choose the mean as 2.5 and standard deviation as 2.

 y <- pnorm(x,mean=2.5,sd = 2)

Give the chart file a name.

png(file = "pnorm.png")

R Programming

155

Plot the graph.

plot(x,y)

Save the file.

dev.off()

When we execute the above code, it produces the following result:

qnorm()

This function takes the probability value and gives a number whose cumulative value

matches the probability value.

Create a sequence of probability values incrementing by 0.02.

x <- seq(0,1,by=0.02)

Choose the mean as 2 and standard deviation as 3.

y <- qnorm(x,mean=2,sd=1)

R Programming

156

Give the chart file a name.

png(file = "qnorm.png")

Plot the graph.

plot(x,y)

Save the file.

dev.off()

When we execute the above code, it produces the following result:

rnorm()

This function is used to generate random numbers whose distribution is normal. It takes

the sample size as input and generates that many random numbers. We draw a histogram

to show the distribution of the generated numbers.

Create a sample of 50 numbers which are normally distributed.

R Programming

157

y <- rnorm(50)

Give the chart file a name.

png(file = "rnorm.png")

Plot the histogram for this sample.

hist(y, main = "Normal DIstribution")

Save the file.

dev.off()

When we execute the above code, it produces the following result:

R Programming

158

The binomial distribution model deals with finding the probability of success of an event

which has only two possible outcomes in a series of experiments. For example, tossing of

a coin always gives a head or a tail. The probability of finding exactly 3 heads in tossing a

coin repeatedly for 10 times is estimated during the binomial distribution.

R has four in-built functions to generate binomial distribution. They are described below.

dbinom(x, size, prob)

pbinom(x, size, prob)

qbinom(p, size, prob)

rbinom(n, size, prob)

Following is the description of the parameters used:

 x is a vector of numbers.

 p is a vector of probabilities.

 nis number of observations.

 size is the number of trials.

 prob is the probability of success of each trial.

dbinom()

This function gives the probability density distribution at each point.

Create a sample of 50 numbers which are incremented by 1.

x <- seq(0,50,by=1)

Create the binomial distribution.

y <- dbinom(x,50,0.5)

Give the chart file a name.

png(file = "dbinom.png")

Plot the graph for this sample.

plot(x,y)

Save the file.

dev.off()

37. R – Binomial Distribution

R Programming

159

When we execute the above code, it produces the following result:

pbinom()

This function gives the cumulative probability of an event. It is a single value representing

the probability.

Probability of getting 26 or less heads from a 51 tosses of a coin.

x <- pbinom(26,51,0.5)

print(x)

When we execute the above code, it produces the following result:

[1] 0.610116

qbinom()

This function takes the probability value and gives a number whose cumulative value

matches the probability value.

How many heads will have a probability of 0.25 will come out when a coin is

tossed 51 times.

x <- qbinom(0.25,51,1/2)

R Programming

160

print(x)

When we execute the above code, it produces the following result:

[1] 23

rbinom()

This function generates required number of random values of given probability from a

given sample.

Find 8 random values from a sample of 150 with probability of 0.4.

x <- rbinom(8,150,.4)

print(x)

When we execute the above code, it produces the following result:

[1] 58 61 59 66 55 60 61 67

R Programming

161

Poisson Regression involves regression models in which the response variable is in the

form of counts and not fractional numbers. For example, the count of number of births or

number of wins in a football match series. Also the values of the response variables follow

a Poisson distribution.

The general mathematical equation for Poisson regression is:

log(y) = a + b1x1 + b2x2 + bnxn.....

Following is the description of the parameters used:

 y is the response variable.

 a and b are the numeric coefficients.

 x is the predictor variable.

The function used to create the Poisson regression model is the glm()function.

Syntax

The basic syntax for glm() function in Poisson regression is:

glm(formula,data,family)

Following is the description of the parameters used in above functions:

 formula is the symbol presenting the relationship between the variables.

 data is the data set giving the values of these variables.

 family is R object to specify the details of the model. It's value is 'Poisson' for

Logistic Regression.

Example

We have the in-built data set "warpbreaks" which describes the effect of wool type (A or

B) and tension (low, medium or high) on the number of warp breaks per loom. Let's

consider "breaks" as the response variable which is a count of number of breaks. The wool

"type" and "tension" are taken as predictor variables.

Input Data

input <- warpbreaks

print(head(input))

38. R – Poisson Regression

R Programming

162

When we execute the above code, it produces the following result:

 breaks wool tension

1 26 A L

2 30 A L

3 54 A L

4 25 A L

5 70 A L

6 52 A L

Create Regression Model

output <-glm(formula = breaks ~ wool+tension,

 data=warpbreaks,

 family=poisson)

print(summary(output))

When we execute the above code, it produces the following result:

Call:

glm(formula = breaks ~ wool + tension, family = poisson, data = warpbreaks)

Deviance Residuals:

 Min 1Q Median 3Q Max

-3.6871 -1.6503 -0.4269 1.1902 4.2616

Coefficients:

 Estimate Std. Error z value Pr(>|z|)

(Intercept) 3.69196 0.04541 81.302 < 2e-16 ***

woolB -0.20599 0.05157 -3.994 6.49e-05 ***

tensionM -0.32132 0.06027 -5.332 9.73e-08 ***

tensionH -0.51849 0.06396 -8.107 5.21e-16 ***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for poisson family taken to be 1)

 Null deviance: 297.37 on 53 degrees of freedom

Residual deviance: 210.39 on 50 degrees of freedom

AIC: 493.06

R Programming

163

Number of Fisher Scoring iterations: 4

In the summary we look for the p-value in the last column to be less than 0.05 to consider

an impact of the predictor variable on the response variable. As seen the wooltype B having

tension type M and H have impact on the count of breaks.

R Programming

164

We use Regression analysis to create models which describe the effect of variation in

predictor variables on the response variable. Sometimes, if we have a categorical variable

with values like Yes/No or Male/Female etc. The simple regression analysis gives multiple

results for each value of the categorical variable. In such scenario, we can study the effect

of the categorical variable by using it along with the predictor variable and comparing the

regression lines for each level of the categorical variable. Such an analysis is termed

as Analysis of Covariance also called as ANCOVA.

Example

Consider the R built in data set mtcars. In it we observer that the field "am" represents

the type of transmission (auto or manual). It is a categorical variable with values 0 and 1.

The miles per gallon value(mpg) of a car can also depend on it besides the value of horse

power("hp").

We study the effect of the value of "am" on the regression between "mpg" and "hp". It is

done by using the aov() function followed by the anova() function to compare the

multiple regressions.

Input Data

Create a data frame containing the fields "mpg", "hp" and "am" from the data set mtcars.

Here we take "mpg" as the response variable, "hp" as the predictor variable and "am" as

the categorical variable.

input <- mtcars[,c("am","mpg","hp")]

print(head(input))

When we execute the above code, it produces the following result:

 am mpg hp

Mazda RX4 1 21.0 110

Mazda RX4 Wag 1 21.0 110

Datsun 710 1 22.8 93

Hornet 4 Drive 0 21.4 110

Hornet Sportabout 0 18.7 175

Valiant 0 18.1 105

ANCOVA Analysis

We create a regression model taking "hp" as the predictor variable and "mpg" as the

response variable taking into account the interaction between "am" and "hp".

39. R – Analysis of Covariance

R Programming

165

Model with interaction between categorical variable and predictor variable

Get the dataset.

input <- mtcars

Create the regression model.

result <- aov(mpg~hp*am,data=input)

print(summary(result))

When we execute the above code, it produces the following result:

 Df Sum Sq Mean Sq F value Pr(>F)

hp 1 678.4 678.4 77.391 1.50e-09 ***

am 1 202.2 202.2 23.072 4.75e-05 ***

hp:am 1 0.0 0.0 0.001 0.981

Residuals 28 245.4 8.8

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

This result shows that both horse power and transmission type has significant effect on

miles per gallon as the p value in both cases is less than 0.05. But the interaction between

these two variables is not significant as the p-value is more than 0.05.

Model without interaction between categorical variable and predictor

variable

Get the dataset.

input <- mtcars

Create the regression model.

result <- aov(mpg~hp+am,data=input)

print(summary(result))

When we execute the above code, it produces the following result:

 Df Sum Sq Mean Sq F value Pr(>F)

hp 1 678.4 678.4 80.15 7.63e-10 ***

am 1 202.2 202.2 23.89 3.46e-05 ***

Residuals 29 245.4 8.5

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

R Programming

166

This result shows that both horse power and transmission type has significant effect on

miles per gallon as the p value in both cases is less than 0.05.

Comparing Two Models

Now we can compare the two models to conclude if the interaction of the variables is truly

in-significant. For this we use the anova() function.

Get the dataset.

input <- mtcars

Create the regression models.

result1 <- aov(mpg~hp*am,data=input)

result2 <- aov(mpg~hp+am,data=input)

Compare the two models.

print(anova(result1,result2))

When we execute above code, it produces following result:

Model 1: mpg ~ hp * am

Model 2: mpg ~ hp + am

 Res.Df RSS Df Sum of Sq F Pr(>F)

1 28 245.43

2 29 245.44 -1 -0.0052515 6e-04 0.9806

As the p-value is greater than 0.05 we conclude that the interaction between horse power

and transmission type is not significant. So the mileage per gallon will depend in a similar

manner on the horse power of the car in both auto and manual transmission mode.

R Programming

167

Time series is a series of data points in which each data point is associated with a

timestamp. A simple example is the price of a stock in the stock market at different points

of time on a given day. Another example is the amount of rainfall in a region at different

months of the year. R language uses many functions to create, manipulate and plot the

time series data. The data for the time series is stored in an R object called time-series

object. It is also a R data object like a vector or data frame.

The time series object is created by using the ts() function.

Syntax

The basic syntax for ts() function in time series analysis is:

timeseries.object.name <- ts(data, start, end, frequency)

Following is the description of the parameters used:

 data is a vector or matrix containing the values used in the time series.

 start specifies the start time for the first observation in time series.

 end specifies the end time for the last observation in time series.

 frequency specifies the number of observations per unit time.

Except the parameter "data" all other parameters are optional.

Example

Consider the annual rainfall details at a place starting from January 2012. We create an R

time series object for a period of 12 months and plot it.

Get the data points in form of a R vector.

rainfall <-

c(799,1174.8,865.1,1334.6,635.4,918.5,685.5,998.6,784.2,985,882.8,1071)

Convert it to a time series object.

rainfall.timeseries <- ts(rainfall,start=c(2012,1),frequency=12)

Print the timeseries data.

print(rainfall.timeseries)

Give the chart file a name.

png(file = "rainfall.png")

40. R – Time Series Analysis

R Programming

168

Plot a graph of the time series.

plot(rainfall.timeseries)

Save the file.

dev.off()

When we execute the above code, it produces the following result and chart:

Jan Feb Mar Apr May Jun Jul Aug Sep

2012 799.0 1174.8 865.1 1334.6 635.4 918.5 685.5 998.6 784.2

 Oct Nov Dec

2012 985.0 882.8 1071.0

The Time series chart:

Different Time Intervals

The value of the frequency parameter in the ts() function decides the time intervals at

which the data points are measured. A value of 12 indicates that the time series is for 12

months. Other values and its meaning is as below:

R Programming

169

 frequency = 12 pegs the data points for every month of a year.

 frequency = 4 pegs the data points for every quarter of a year.

 frequency = 6 pegs the data points for every 10 minutes of an hour.

 frequency = 24*6 pegs the data points for every 10 minutes of a day.

Multiple Time Series

We can plot multiple time series in one chart by combining both the series into a matrix.

Get the data points in form of a R vector.

rainfall1 <-

c(799,1174.8,865.1,1334.6,635.4,918.5,685.5,998.6,784.2,985,882.8,1071)

rainfall2 <-

c(655,1306.9,1323.4,1172.2,562.2,824,822.4,1265.5,799.6,1105.6,1106.7,1337.8)

Convert them to a matrix.

combined.rainfall <- matrix(c(rainfall1,rainfall2),nrow=12)

Convert it to a time series object.

rainfall.timeseries <- ts(combined.rainfall,start=c(2012,1),frequency=12)

Print the timeseries data.

print(rainfall.timeseries)

Give the chart file a name.

png(file = "rainfall_combined.png")

Plot a graph of the time series.

plot(rainfall.timeseries, main = "Multiple Time Series")

Save the file.

dev.off()

When we execute the above code, it produces the following result and chart:

 Series 1 Series 2

Jan 2012 799.0 655.0

Feb 2012 1174.8 1306.9

Mar 2012 865.1 1323.4

Apr 2012 1334.6 1172.2

R Programming

170

May 2012 635.4 562.2

Jun 2012 918.5 824.0

Jul 2012 685.5 822.4

Aug 2012 998.6 1265.5

Sep 2012 784.2 799.6

Oct 2012 985.0 1105.6

Nov 2012 882.8 1106.7

Dec 2012 1071.0 1337.8

The Multiple Time series chart:

R Programming

171

When modeling real world data for regression analysis, we observe that it is rarely the

case that the equation of the model is a linear equation giving a linear graph. Most of the

time, the equation of the model of real world data involves mathematical functions of

higher degree like an exponent of 3 or a sin function. In such a scenario, the plot of the

model gives a curve rather than a line. The goal of both linear and non-linear regression

is to adjust the values of the model's parameters to find the line or curve that comes

closest to your data. On finding these values we will be able to estimate the response

variable with good accuracy.

In Least Square regression, we establish a regression model in which the sum of the

squares of the vertical distances of different points from the regression curve is minimized.

We generally start with a defined model and assume some values for the coefficients. We

then apply the nls() function of R to get the more accurate values along with the

confidence intervals.

Syntax

The basic syntax for creating a nonlinear least square test in R is:

nls(formula, data, start)

Following is the description of the parameters used:

 formula is a nonlinear model formula including variables and parameters.

 data is a data frame used to evaluate the variables in the formula.

 start is a named list or named numeric vector of starting estimates.

Example

We will consider a nonlinear model with assumption of initial values of its coefficients. Next

we will see what is the confidence intervals of these assumed values so that we can judge

how well these values fir into the model.

So let's consider the below equation for this purpose:

a = b1*x^2+b2

Let's assume the initial coefficients to be 1 and 3 and fit these values into nls() function.

xvalues <- c(1.6,2.1,2,2.23,3.71,3.25,3.4,3.86,1.19,2.21)

yvalues <- c(5.19,7.43,6.94,8.11,18.75,14.88,16.06,19.12,3.21,7.58)

Give the chart file a name.

png(file = "nls.png")

Plot these values.

41. R – Nonlinear Least Square

R Programming

172

plot(xvalues,yvalues)

Take the assumed values and fit into the model.

model <- nls(yvalues ~ b1*xvalues^2+b2,start = list(b1=1,b2=3))

Plot the chart with new data by fitting it to a prediction from 100 data

points.

new.data <- data.frame(xvalues = seq(min(xvalues),max(xvalues),len=100))

lines(new.data$xvalues,predict(model,newdata=new.data))

Save the file.

dev.off()

Get the sum of the squared residuals.

print(sum(resid(model)^2))

Get the confidence intervals on the chosen values of the coefficients.

print(confint(model))

When we execute the above code, it produces the following result:

[1] 1.081935

Waiting for profiling to be done...

 2.5% 97.5%

b1 1.137708 1.253135

b2 1.497364 2.496484

R Programming

173

We can conclude that the value of b1 is more close to 1 while the value of b2 is more close

to 2 and not 3.

R Programming

174

Decision tree is a graph to represent choices and their results in form of a tree.

The nodes in the graph represent an event or choice and the edges of the graph represent

the decision rules or conditions. It is mostly used in Machine Learning and Data Mining

applications using R.

Examples of use of decision tress is - predicting an email as spam or not spam, predicting

of a tumor is cancerous or predicting a loan as a good or bad credit risk based on the

factors in each of these. Generally, a model is created with observed data also called

training data. Then a set of validation data is used to verify and improve the model. R has

packages which are used to create and visualize decision trees. For new set of predictor

variable, we use this model to arrive at a decision on the category (yes/No, spam/not

spam) of the data.

The R package "party" is used to create decision trees.

Install R Package

Use the below command in R console to install the package. You also have to install the

dependent packages if any.

 install.packages("party")

The package "party" has the function ctree() which is used to create and analyze decison

tree.

Syntax

The basic syntax for creating a decision tree in R is:

ctree(formula, data)

Following is the description of the parameters used:

 formula is a formula describing the predictor and response variables.

 data is the name of the data set used.

Input Data

We will use the R in-built data set named readingSkills to create a decision tree. It

describes the score of someone's readingSkills if we know the variables

"age","shoesize","score" and whether the person is a native speaker or not.

Here is the sample data.

Load the party package. It will automatically load other dependent packages.

library(party)

42. R – Decision Tree

R Programming

175

Print some records from data set readingSkills.

print(head(readingSkills))

When we execute the above code, it produces the following result and chart:

 nativeSpeaker age shoeSize score

1 yes 5 24.83189 32.29385

2 yes 6 25.95238 36.63105

3 no 11 30.42170 49.60593

4 yes 7 28.66450 40.28456

5 yes 11 31.88207 55.46085

6 yes 10 30.07843 52.83124

Loading required package: methods

Loading required package: grid

...............................

...............................

Example

We will use the ctree() function to create the decision tree and see its graph.

Load the party package. It will automatically load other dependent packages.

library(party)

Create the input data frame.

input.dat <- readingSkills[c(1:105),]

Give the chart file a name.

png(file = "decision_tree.png")

Create the tree.

 output.tree <- ctree(

 nativeSpeaker ~ age + shoeSize + score,

 data = input.dat)

Plot the tree.

plot(output.tree)

Save the file.

R Programming

176

dev.off()

When we execute the above code, it produces the following result:

null device

 1

Loading required package: methods

Loading required package: grid

Loading required package: mvtnorm

Loading required package: modeltools

Loading required package: stats4

Loading required package: strucchange

Loading required package: zoo

Attaching package: ‘zoo’

The following objects are masked from ‘package:base’:

 as.Date, as.Date.numeric

Loading required package: sandwich

R Programming

177

Conclusion

From the decision tree shown above we can conclude that anyone whose readingSkills

score is less than 38.3 and age is more than 6 is not a native Speaker.

R Programming

178

In the random forest approach, a large number of decision trees are created. Every

observation is fed into every decision tree. The most common outcome for each

observation is used as the final output. A new observation is fed into all the trees and

taking a majority vote for each classification model.

An error estimate is made for the cases which were not used while building the tree.

That is called an OOB (Out-of-bag) error estimate which is mentioned as a

percentage.

The R package "randomForest" is used to create random forests.

Install R Package

Use the below command in R console to install the package. You also have to install the

dependent packages if any.

install.packages("randomForest)

The package "randomForest" has the function randomForest() which is used to create

and analyze random forests.

Syntax

The basic syntax for creating a random forest in R is:

randomForest(formula, data)

Following is the description of the parameters used:

 formula is a formula describing the predictor and response variables.

 data is the name of the data set used.

Input Data

We will use the R in-built data set named readingSkills to create a decision tree. It

describes the score of someone's readingSkills if we know the variables

"age","shoesize","score" and whether the person is a native speaker.

Here is the sample data.

Load the party package. It will automatically load other required packages.

library(party)

Print some records from data set readingSkills.

print(head(readingSkills))

43. R – Random Forest

R Programming

179

When we execute the above code, it produces the following result and chart:

 nativeSpeaker age shoeSize score

1 yes 5 24.83189 32.29385

2 yes 6 25.95238 36.63105

3 no 11 30.42170 49.60593

4 yes 7 28.66450 40.28456

5 yes 11 31.88207 55.46085

6 yes 10 30.07843 52.83124

Loading required package: methods

Loading required package: grid

...............................

...............................

Example

We will use the randomForest() function to create the decision tree and see it's graph.

Load the party package. It will automatically load other required packages.

library(party)

library(randomForest)

Create the forest.

output.forest <- randomForest(nativeSpeaker ~ age + shoeSize + score,

data=readingSkills)

View the forest results.

print(output.forest)

Importance of each predictor.

print(importance(fit,type=2))

When we execute the above code, it produces the following result:

Call:

 randomForest(formula = nativeSpeaker ~ age + shoeSize + score, data =

readingSkills)

 Type of random forest: classification

 Number of trees: 500

No. of variables tried at each split: 1

R Programming

180

 OOB estimate of error rate: 1%

Confusion matrix:

 no yes class.error

no 99 1 0.01

yes 1 99 0.01

 MeanDecreaseGini

age 13.95406

shoeSize 18.91006

score 56.73051

Conclusion

From the random forest shown above we can conclude that the shoesize and score are the

important factors deciding if someone is a native speaker or not. Also the model has only

1% error which means we can predict with 99% accuracy.

R Programming

181

Survival analysis deals with predicting the time when a specific event is going to occur. It

is also known as failure time analysis or analysis of time to death. For example predicting

the number of days a person with cancer will survive or predicting the time when a

mechanical system is going to fail.

The R package named survival is used to carry out survival analysis. This package

contains the function Surv() which takes the input data as a R formula and creates a

survival object among the chosen variables for analysis. Then we use the

function survfit() to create a plot for the analysis.

Install Package

install.packages("survival")

Syntax

The basic syntax for creating survival analysis in R is:

Surv(time,event)

survfit(formula)

Following is the description of the parameters used:

 time is the follow up time until the event occurs.

 event indicates the status of occurrence of the expected event.

 formula is the relationship between the predictor variables.

Example

We will consider the data set named "pbc" present in the survival packages installed above.

It describes the survival data points about people affected with primary biliary cirrhosis

(PBC) of the liver. Among the many columns present in the data set we are primarily

concerned with the fields "time" and "status". Time represents the number of days

between registration of the patient and earlier of the event between the patient receiving

a liver transplant or death of the patient.

Load the library.

library("survival")

Print first few rows.

print(head(pbc))

44. R – Survival Analysis

R Programming

182

When we execute the above code, it produces the following result and chart:

 id time status trt age sex ascites hepato spiders edema bili chol

albumin copper alk.phos ast

1 1 400 2 1 58.76523 f 1 1 1 1.0 14.5 261

2.60 156 1718.0 137.95

2 2 4500 0 1 56.44627 f 0 1 1 0.0 1.1 302

4.14 54 7394.8 113.52

3 3 1012 2 1 70.07255 m 0 0 0 0.5 1.4 176

3.48 210 516.0 96.10

4 4 1925 2 1 54.74059 f 0 1 1 0.5 1.8 244

2.54 64 6121.8 60.63

5 5 1504 1 2 38.10541 f 0 1 1 0.0 3.4 279

3.53 143 671.0 113.15

6 6 2503 2 2 66.25873 f 0 1 0 0.0 0.8 248

3.98 50 944.0 93.00

 trig platelet protime stage

1 172 190 12.2 4

2 88 221 10.6 3

3 55 151 12.0 4

4 92 183 10.3 4

5 72 136 10.9 3

6 63 NA 11.0 3

From the above data we are considering time and status for our analysis.

Applying Surv() and survfit() Function

Now we proceed to apply the Surv() function to the above data set and create a plot that

will show the trend.

Load the library.

library("survival")

Create the survival object.

survfit(Surv(pbc$time,pbc$status==2)~1)

Give the chart file a name.

png(file = "survival.png")

Plot the graph.

plot(survfit(Surv(pbc$time,pbc$status==2)~1))

R Programming

183

Save the file.

dev.off()

When we execute the above code, it produces the following result and chart:

Call: survfit(formula = Surv(pbc$time, pbc$status == 2) ~ 1)

 n events median 0.95LCL 0.95UCL

 418 161 3395 3090 3853

The trend in the above graph helps us predicting the probability of survival at the end of

a certain number of days.

R Programming

184

Chi-Square test is a statistical method to determine if two categorical variables have a

significant correlation between them. Both those variables should be from same population

and they should be categorical like - Yes/No, Male/Female, Red/Green etc.

For example, we can build a data set with observations on people's ice-cream buying

pattern and try to correlate the gender of a person with the flavor of the ice-cream they

prefer. If a correlation is found we can plan for appropriate stock of flavors by knowing

the number of gender of people visiting.

Syntax

The function used for performing chi-Square test is chisq.test().

The basic syntax for creating a chi-square test in R is:

chisq.test(data)

Following is the description of the parameters used:

 data is the data in form of a table containing the count value of the variables in

the observation.

Example

We will take the Cars93 data in the "MASS" library which represents the sales of different

models of car in the year 1993.

library("MASS")

print(str(Cars93))

When we execute the above code, it produces the following result:

'data.frame': 93 obs. of 27 variables:

 $ Manufacturer : Factor w/ 32 levels "Acura","Audi",..: 1 1 2 2 3 4 4 4 4

5 ...

 $ Model : Factor w/ 93 levels "100","190E","240",..: 49 56 9 1 6

24 54 74 73 35 ...

 $ Type : Factor w/ 6 levels "Compact","Large",..: 4 3 1 3 3 3 2 2

3 2 ...

 $ Min.Price : num 12.9 29.2 25.9 30.8 23.7 14.2 19.9 22.6 26.3 33 ...

 $ Price : num 15.9 33.9 29.1 37.7 30 15.7 20.8 23.7 26.3 34.7 ...

 $ Max.Price : num 18.8 38.7 32.3 44.6 36.2 17.3 21.7 24.9 26.3

36.3 ...

 $ MPG.city : int 25 18 20 19 22 22 19 16 19 16 ...

 $ MPG.highway : int 31 25 26 26 30 31 28 25 27 25 ...

45. R – Chi Square Test

R Programming

185

 $ AirBags : Factor w/ 3 levels "Driver & Passenger",..: 3 1 2 1 2 2 2 2 2

2 ...

 $ DriveTrain : Factor w/ 3 levels "4WD","Front",..: 2 2 2 2 3 2 2 3 2 2 ...

 $ Cylinders : Factor w/ 6 levels "3","4","5","6",..: 2 4 4 4 2 2 4 4 4 5 ...

 $ EngineSize : num 1.8 3.2 2.8 2.8 3.5 2.2 3.8 5.7 3.8 4.9 ...

 $ Horsepower : int 140 200 172 172 208 110 170 180 170 200 ...

 $ RPM : int 6300 5500 5500 5500 5700 5200 4800 4000 4800 4100 ...

 $ Rev.per.mile : int 2890 2335 2280 2535 2545 2565 1570 1320 1690 1510 ...

 $ Man.trans.avail : Factor w/ 2 levels "No","Yes": 2 2 2 2 2 1 1 1 1 1 ...

 $ Fuel.tank.capacity: num 13.2 18 16.9 21.1 21.1 16.4 18 23 18.8 18 ...

 $ Passengers : int 5 5 5 6 4 6 6 6 5 6 ...

 $ Length : int 177 195 180 193 186 189 200 216 198 206 ...

 $ Wheelbase : int 102 115 102 106 109 105 111 116 108 114 ...

 $ Width : int 68 71 67 70 69 69 74 78 73 73 ...

 $ Turn.circle : int 37 38 37 37 39 41 42 45 41 43 ...

 $ Rear.seat.room : num 26.5 30 28 31 27 28 30.5 30.5 26.5 35 ...

 $ Luggage.room : int 11 15 14 17 13 16 17 21 14 18 ...

 $ Weight : int 2705 3560 3375 3405 3640 2880 3470 4105 3495 3620 ...

 $ Origin : Factor w/ 2 levels "USA","non-USA": 2 2 2 2 2 1 1 1 1 1 ...

 $ Make : Factor w/ 93 levels "Acura Integra",..: 1 2 4 3 5 6 7 9 8 10 ...

The above result shows the dataset has many Factor variables which can be considered

as categorical variables. For our model we will consider the variables "AirBags" and "Type".

Here we aim to find out any significant correlation between the types of car sold and the

type of Air bags it has. If correlation is observed we can estimate which types of cars can

sell better with what types of air bags.

Load the library.

library("MASS")

Create a data frame from the main data set.

car.data <- data.frame(Cars93$AirBags, Cars93$Type)

Create a table with the needed variables.

car.data = table(Cars93$AirBags, Cars93$Type)

print(car.data)

Perform the Chi-Square test.

print(chisq.test(car.data))

 Compact Large Midsize Small Sporty Van

R Programming

186

 Driver & Passenger 2 4 7 0 3 0

 Driver only 9 7 11 5 8 3

 None 5 0 4 16 3 6

 Pearson's Chi-squared test

data: car.data

X-squared = 33.001, df = 10, p-value = 0.0002723

Warning message:

In chisq.test(car.data) : Chi-squared approximation may be incorrect

Conclusion

The result shows the p-value of less than 0.05 which indicates a string correlation.

